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Examples today, especially the last one of the day, will be examples that are only doable with recursion.

def cascade(n): 
    if n < 10: 
        print(n) 
    else: 
        print(n) 
        cascade(n//10) 
        print(n) 

With the above example, if we call cascade  on 123, it will print:

123 
12 
1 
12 
123 

cascade  is first called on 123, prints 123, then this calls cascade  on 12, prints 12, then calls cascade  on 1.
We then go back to the previous call, which prints 12 again, then 123 again.

What if cascade returned instead of printed?

def cascade(n): 
    if n < 10: 
        print(n) 
    else: 
        print(n) 
        cascade(n//10) 
        return n 

This would only print:

1 
2 
3 
4 
5 

We don’t have to write the above example in such an obviously recursive way:

def cascade(n): 
    print(n) 
    if n>=10: 



        cascade(n//10) 
        print(n) 

Which one is better? Well, this second implementation is shorter yes, but the first one is more obvious, and as
such, is better for readability.

Inverse Cascade

Write a function that prints an inverse cascade:

1 
12 
123 
12 
1 

Template given:

def inverse_cascade(n): 
    grow(n) 
    print(n) 
    shrink(n) 
     
def f_then_g(f,g,n): 
    if n: 
        f(n) 
        g(n) 

Write the codes for grow and shrink:

grow = lambda n: f_then_g(grow, print, n//10) 
shrink = lambda n: f_then_g(print,shrink,n//10) 

Recursion vs. Self-Reference
 Recursion involves calling the function on some smaller version on the same problem. Self-Reference

just calls the function defined within itself.

Tree Recursion
Tree recursion occurs when a function calls itself twice.

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one
recursive call.

We can do this with our friend Fibonacci:

def fib(n): 
    if n == 0: 



        return 0 
    if n == 1: 
        return 1 
    else: 
        return fib(n-2)+fib(n-1) 

The only numbers this function ever returns are 1s and 0s. You can imagine it’s quite slow! Fibonacci numbers
get pretty big: the 35th is 9 million+.

You can trace the order in which things operate:

fib(5) 

first calls fib(3) , then fib(1) , which returns 1. fib(3)  before calling fib(2) , which calls fib(0)  and
fib(1) .

Recursion depth error
 This does not stop you from computing very large recursion problems. It only stops you from

computing problems that never end. It is possible to increase the maximum number before Python
errors (the default is 1000), but you don’t need to know it.

ucb.py
 Every time there is a project, you get a file ucb.py , which includes a @trace  decorator. This

@trace  decorator is nicer in the sense that it indents stuff, so that you can see an even nicer
breakdown of what stuff gets returned where.

Counting Partitions
The number of partitions of a positive integer n , using parts up to size m , is the number of ways in which n
can be expressed as the sum of the positive integer parts up to m  in increasing order.

count_partitions(6,4) 

1. 2+4=6
2. 1+1+4=6
3. 3+3=6
4. 1+2+3=6
5. 1+1+1+3=6
6. 2+2+2=6
7. 1+1+2+2=6
8. 1+1+1+1+2=6
9. 1+1+1+1+1+1=6

The above should return 9, because there are 9 ways to split 6 into partitions up to size 4.

How can we do this?

We need to figure out how to split up the list, so we can count the number of rows in one group, and then the
other group, ensuring there is no overlap between them also while making sure there are no missing scenarios.



Recursive decomposition is finding simpler instances of the same problem.

In the example case, explore two possibilities:

Use at least one 4.
Use no 4s.

In this case, our group of 9 is divided into 2 and 7. In this case, we are really solving two simpler problems:

count_partitions(2,4)
count_partitions(6,3)

How do we know this works? We make a recursive leap of faith and assume that the two smaller functions
really do what they’re supposed to do.

Tree recursion often involves exploring different choices.

def count_partitions(n,m): 
    else: 
        with_m = count_partitions(n-m, m) 
        without_m = count_partitions(n, m-1) 
        return with_m + without_m 

Base cases don’t always come just from what’s the simplest scenario. Base cases come from trying to figure out
where your recursive calls will lead to. In the above case, we first write the else  clause, then try to figure out
the base case from there.

def count_partitions(n,m): 
    if n==0: 
        return 1 
    elif n < 0: 
        return 0 
    elif m == 0: 
        return 0 
    else: 
        with_m = count_partitions(n-m, m) 
        without_m = count_partitions(n, m-1) 
        return with_m + without_m 

Why don’t we use assert statements on n<0 ?
 If we use assert statements, we need to make doubly sure our recursive calls never reach this situation.

This is easier than it seems, for example, count_partitions(6,4)  calls count_partitions(2,4) ,
which itself calls count_partitions(-2,4) .

Simply writing them into the if statements makes your life a little easier because you just need to
handle the bogus cases manually.

You must think about this in terms of abstraction. If you were to call count_partitions(5,3)  and draw an
environment diagram, there are 234 separate steps! There’s no way you’d be able to do this by hand, especially
in an exam.


