
CS61A Lecture 15
Wednesday, October 2nd, 2019

Announcements
Cats project is due tomorrow! Early submission bonus point if submitted today.
Homework 4 is due next Thursday. It is worth 4 points.
Hog Composition revisions is due next Thursday as well.

Mutable Functions
Today we’re gonna talk about functions that change their behavior throughout the course of a program, which
is helpful for describing certain real world phenomena.

For example, let’s take a bank account with a balance of $100. Let’s call the function withdraw :

>>> withdraw(25)
75
>>> withdraw(25)
50
>>> withdraw(60)
'Insufficient funds!'

This is new! Previously, if we called a function with the same parameters, it would always return the same return
value! So where’s this balance stored? There are many ways to trigger this behavior, but for today, we will store
some data within the function itself through a higher-order function.

>>> withdraw = make_withdraw(100)

Before we get to the code, let’s see the environment diagram.

You can see the balance is never passed into the withdraw function itself. What’s happening is every time
you call withdraw , a balance in the parent frame, not the local frame is being updated.

All calls to the same function have the same parent! Both the first and second withdraw have the parent
make_withdraw . We’ve never done this before. Assignment binds name(s) to value(s) in the first frame the

current environment. But withdraw does something different.

Nonlocal Assignment and Persistent Local State
All frames outside the current local and global frame is called nonlocal.

The nonlocal statement tells Python that future assignments of that variable name come from somewhere
within the environment (except the global frame).

def make_withdraw(balance):
 """Return a withdraw function with a starting BALANCE."""
 def withdraw(amount):
 nonlocal balance
 if amount > balance:
 return 'Insufficient funds!'
 balance = balance - amount
 return balance
 return withdraw

You can put nonlocal anywhere before you refer to it within the body of the child function, but it’s
conventional to put it at the top of the child function. You can also do:

def f(x):
 def g(y):
 def h(z):
 nonlocal x
 x += 1
 return h
 return g

In the above example: g will never have access to x . When the nonlocal statement is executed, the
interpreter looks for the name x first in g , when it doesn’t find it, then moves to f , where x is defined.

The global frame is not considered a nonlocal frame. To edit a variable in the global frame, you use the
global statement, though you will not need it in this course.

The Effect on Nonlocal Statements
Effect: Future assignments to that name change its pre-existing binding in the first non-local frame of the
current environment in which that name is bound.

And rules from the official Python language reference:

Names listed in a nonlocal statement must refer to pre-existing bindings in an enclosing scope.
Names listed in a nonlocal statement must not collide with pre-existing bindings in the local scope

The Many Meanings of Assignment Statements

Status Effect

No nonlocal statement and x is not
bound locally

Create a new binding from name x to object 2 in the
first frame of the current environment

No nonlocal statement and x is bound
locally

Re-bind name x to object 2 in the first frame of the
current environment

nonlocal statement and x is bound on a
nonlocal frame

Re-bind x to 2 in the first non-local frame of the
current environment in which x is bound

nonlocal statement and x is not bound in
a nonlocal frame

SyntaxError: no binding for nonlocal x found

nonlocal statement, x is bound in a non-
local frame, and also bound locally

SyntaxError: name x is parameter and nonlocal

Python Particulars
Almost everything in this class can be applied to other programming languages, but there are a few things that
are unique to Python:

Python pre-computes which frame contains each name before executing the body of a function. That means
within the body of a function, all instances of a name must refer to the same frame. You cannot, for example:

Before running the code, Python essentially looks ahead and sees that you are going to assign balance
locally. You cannot have both a local and a nonlocal variable of the same name within the same frame.

Mutable Values and Persistent Nonlocal State
Mutable values can be changed without nonlocal statement. Remember that mutable values like lists are only
pointed to with names, not bound to the name itself. Anything you draw a line to, outside of the boxes of
frame in an environment diagram, are fair game to change from any inner frame.

Python didn’t use to have nonlocal statements, and people managed just fine. Here’s an example of code that
does the same thing, with a different implementation.

def make_withdraw_list(balance):

def make_withdraw(balance):
 """Return a withdraw function with a starting BALANCE."""
 def withdraw(amount):
 if amount > balance: #This checks the balance in the parent frame
 return 'Insufficient funds!'
 balance = balance - amount #Without nonlocal, balance would create a new variabl
 return balance
 return withdraw

 b = [balance]
 def withdraw(amount):
 if amount > b[0]:
 return 'Insufficient funds'
 b[0] = b[0] - amount
 return b[0]
 return withdraw

withdraw = make_withdraw_list(100)
withdraw(25)

This never changes what b is, which is a pointer to a list, but it does change the list that b points to.

These functions are impure, because they have mutable values.

nonlocal never confuses names between different functions. See the following example for Professor
DeNero and his evil twin Jack:

>>> john = make_withdraw(100)
>>> jack = make_withdraw(1000000)
>>> john(10)
90
>>> jack(1000)
999000
>>> john(30)
60
>>> jack(998940)
60
>>> john is jack
False
>>> john
<function make_withdraw...>
>>> jack
<function make_withdraw...>
>>> john == jack
False
>>> john(0) == jack(0)
True
>>> john(10)
50
>>> jack(20)
40
>>> john(0) == jack(0)
False

Referential Transparency, Lost
Expressions are referentially transparent if substituting an expression with its value does not change the
meaning of a program.

Mutation operations violate the condition of referential transparency because they do more than just return a
value, which is modify the environment.

Being careful with nonlocal assignment

Look at the following code:

def f(x):
 x = 4
 def g(y):
 def h(z):
 nonlocal x
 x = x + 1
 return x + y + z
 return h
 return g
a = f(1)
b = a(2)
total = b(3) + b(4)

This code returns 22. But if we replace b(3) with its return value 10, the whole thing will return 21!
That’s because b(3) increased the count of x to 5, not 4, and skipping it means x is returned as 5,
not 6, when b(4) is called.



