
CS61A Lecture 16
Friday, October 4th, 2019

Announcements
Professor DeNero will be out of town Monday and Wednesday next week.
New project next Monday.

Iterators
A container, like a list or a tuple, can provide an iterator that lets you access its elements in order.

You can choose one of two iterators:

The iter(iterable) function returns an iterator over the elements of an iterable value.
You can only do one thing on an iterator: you can call the next(iterator) function to get the next
element in an iterator.

For example:

>>> s = [3,4,5]
>>> t = iter(s)
>>> t
<list_iterator object...>
>>> next(t)
3
>>> next(t)
4

The iterator is really only information about the position! It is not the list itself.

If you create a new iterator, it does not mess with the previous name.

>>> u = iter(s)
>>> next(u)
3
>>> next(t)
5
>>> next(t)
Error

next() is technically a mutable function because every time you call it, it returns a different value, but that
information is really in t , not the next function!

If you change the values of the container after the iterator is created, the behavior cannot always be predicted.
Don’t do that!

You can also use an iterator in a for statement, to go through all the values in the iterator, but that uses up the
iterator.

Views of a dictionary
An iterable value is any value that can be passed to iter to produce an iterator.

An iterator is returned from iter and can be passed to next ; all iterators are mutable.

If you mutate a dictionary after an iterator is created, Python will error when the iterator is called.

A dictionary, its keys, its values, and its items are all iterable values

The order of items in a dictionary is the order in which they were added (Python 3.6+)
Historically, items appeared in an arbitrary order (Python 3.5 and earlier)

>>> d = {'one': 1, 'two': 2, 'three': 3}
>>> d['zero'] = 0
>>> k = iter(d) # or k = iter(d.keys())
>>> next(k)
'one'
>>> next(k)
'two'
>>> next(k)
'three'
>>> next(k)
'zero'
>>> v = iter(d.values())
>>> next(v)
1
>>> i = iter(d.items())
>>> next(i)
('one', 1)

Why is all this useful?
Many built-in Python sequence operations return iterators that compute the results lazily, which is to say they
do as little work as necessary.

map(func,iterable) # Iterate over func(x) for x in a variable
filter(func,iterable) # Iterate over x if func(x)
zip(first_iter,second_iter) # Iterate over co-indexed (x,y) pairs
reversed(sequence) # Iterate over x in a sequence in reverse order

Let’s say we do this:

>>> def double(x):
 print("double", x, "=", 2*x)
 return 2*x
>>> [double(x) for x in range(3,7)]
"double 3 is 6"

6
"double 4 is 8"
8
"double 5 is 10"
10
"double 6 is 12"
12

But if we were to use a map function:

>>> m = map(double,range(3,7))
>>> next(m)
"double 3 is 6"
6

It doesn’t double the range until the next function is called!

You can do the following operations on an iterator to view the remaining elements:

list(iterable) #Create a list containing all x in iterable
tuple(iterable) #Create a tuple containing all x in iterable
sorted(iterable) #Create a sorted list containing x in iterable

Generators
A generator function is a function that yields values instead of returning them.

def plus_minus(x):
 yield x
 yield -x

A normal function returns once, but a generator function can yield multiple times. The generator is an iterator
that is created automatically by the yield statement.

>>> t = plus_minus(3)
>>> next(t)
3
>>> next(t)
-3
>>> t
<generator object plus_minus...>

When the generator function is called, it returns a generator that iterates over its yields.

Generators and Iterators
A yield from statement yields all values from an iterator or iterable (Python 3.3+)

>>> list(a_then_b([3,4],[5,6]))
[3,4,5,6]

We could write a_then_b one of two ways:

def a_then_b(a,b):
 for x in a:
 yield x
 for x in b:
 yield x

def a_then_b(a,b):
 yield from a
 yield from b

So we could:

>>> list(countdown(5))
[5,4,3,2,1]

How would we write countdown ?

def countdown(k)
 if k > 0:
 yield k
 yield from countdown(k-1)

