
CS61A Lecture 18
Wednesday, October 9th, 2019

Announcements
Several deadlines pushed back.
Online-only lecture.

Terminology
All objects have attributes, which are name-value pairs. Classes are objects, so they have attributes. Instance
attributes are attributes specific to an instance. Class attributes are attributes of the class of an instance.

Where the set of all class attributes meets the set of all functions is methods.

According to the Python object system, functions are objects. Bound methods are also objects: a function that
has its first parameter “self” already bound to an instance.

Dot expressions evaluate to bound methods for class attributes that are functions:

<instance>.<method_name> 

Dot Expression Evaluation

<expression>.<name> 

1. Evaluate the <expression>  to the left of a dot, which yields the object of the dot expression.
2. <name>  is matched against the instance attributes of that object; if an attribute with that name exists, its

value is returned.
3. If not, <name>  is looked up in the class, which yields a class attribute value.
4. That value is returned unless it is a function, in which case a bound method is returned instead.

Attribute Assignment
Attribute assignment statements change the values that are bound to attribute names within an object or a
class.

Assignment statements with a dot expression on their left-hand side affect attributes for the object of that dot
expression.

If the object is an instance, then assignment sets an instance attribute.
If the object is a class, then assignment sets a class attribute.

Instance Attribute Assignment vs. Class Attribute Assignment

Account.interest = 0.08 



This sets the interest  of the class at 0.08.

Account().interest = 0.04 

This sets the interest  of that particular instance at 0.04.

Here’s an example of how attribute assignment statements affect classes an objects.

class Account(): 
    interest = 0.02 
     
    def __init__(self,holder): 
        holder = self.holder 
        balance = 0 

First,

>>> jim_account = Account('Jim') 
>>> tom_account = Account('Tom') 
>>> tom_account.interest 
0.02 
>>> jim_account.interest 
0.02 
>>> Account.interest = 0.04 
>>> tom_account.interest 
0.04 
>>> jim_account.interest 
0.04 #This shows an instance's class attributes are mutable. 
>>> jim_account.interest = 0.08 
>>> jim_account.interest 
0.08 
>>> tom_account.interest 
0.04 
>>> Account.interest = 0.05 
>>> jim_account.interest 
0.08 #does not erase the instance value 
>>> tom_account.interest 
0.05 

Inheritance
A feature of the object system in almost every programming language. A method for relating multiple related
classes together, because sometimes classes don’t operate in isolation.

A common use is two similar classes that differ in their degree of specialization.

The specialized case may have the same attributes as the general class, along with some special-case behavior.

class <name>(<base_class>): 
    <suite> 



Conceptually, the new subclass “shares” attributes with its base class. The subclass may override certain
inherited attributes, and anything that isn’t stays the same.

Using inheritance, we implement a subclass by specifying its differences from the base class.

Example
A CheckingAccount  is a specialized type of Account .

>>> ch = CheckingAccount('Tom') 
>>> ch.interest 
0.01 

The interest rate is lower, but deposits work the same way.

>>> ch.deposit(20) 
20 
>>> ch.withdraw(5) 
14 

Meanwhile, withdrawals incur a $1 fee. Most behavior, however, you notice, is shared with the base class
Account . Here’s how to write this class.

class CheckingAccount(Account): 
    """A bank account that charges for withdrawals.""" 
    withdraw_fee = 1 
    interest = 0.01 

Now, we need to redefine the withdraw  method:

    def withdraw(self, amount): 
        return Account.withdraw(self, amount + self.withdraw_fee) 

See that we can reuse the previous withdraw  method, but since we are calling it on a class, and not on an
instance, it does not act as a bound method, so we must supply self .

We don’t need to redefine deposit , or even __init__ , as they can look up into the base class.

Base class attributes aren’t copied into subclasses! It automatically looks up.

To look up a name in a class:

1. If it names an attribute in the class, return the attribute value.
2. Otherwise, look up the name in the base class, if there is one.

>>> ch = CheckingAccount('Tom') # Calls the __init__ of the base class 
>>> ch.interest # Found in subclass 
0.01 
>>> ch.deposit(20) # Found in base class 
20 



>>> ch.withdraw(5) # Found in subclass 
14 

We could redefine withdraw  in the subclass by copying the entire implementation found in Account , but
the problem is any changes we made to the base class wouldn’t be reflected in the subclass.

Object-Oriented Designing
Now, we’ll talk about designing object-oriented programs, which is a discussion of the problems you will
encounter, and some guidance on how to come to a useful solution.

Designing for Inheritance
Don’t repeat yourself; use existing implementations.
Attributes that have been overridden are still accessible via class objects. (i.e. Account.withdraw  still
calls our older withdraw  method.)
Look up attributes on instances whenever possible. (i.e. CheckingAccount.withdraw  should refer to
withdraw_fee  using self.withdraw_fee , rather than just 1, which would break data abstraction

laws, or CheckingAccount.withdraw_fee , which doesn’t allow for specialized checking accounts to
have their own withdrawal fees.)

Inheritance and Composition
The other thing we should think about is when to use inheritance, and when to use composition.

Composition is when one object has another object as an attribute, which is also a common occurrence.

Object-oriented programming shines when we adopt the metaphor, and design our programs like how objects
work in the real world.

Inheritance is best for representing is-a relationships, such as CheckingAccount  being specific types of
Account .

Meanwhile, composition is best for representing has-a relationships, such as a bank having a collection of bank
accounts it manages, so the list of accounts is an attribute. Account  won’t inherit from a bank.

class Bank: 
    """A bank *has* accounts 
    >>> bank = Bank() 
    >>> john = bank.open_account('John', 10) 
    >>> jack = bank.open_account('Jack',5,CheckingAccount) 
    >>> john.interest 
    0.02 
    >>> jack.interest 
    0.01 
    >>> bank.pay_interest() 
    >>> john.balance 
    10.2 
    """ 



Well, so how do we implement Bank ? First,we note it takes no arguments to create one, and it has to
remember what accounts it has.

    def __init__(self): 
        self.accounts = [] 

Now, we start implementing its methods.

    def open_account(self,holder,amount,kind=Account): 
        account = kind(holder) 
        account.deposit(amount) 
        self.accounts.append(account) 
        return account 

We create the account by calling kind  and binding holder  to its name. Next, we have a starting balance,
and we also have to remember that this is an account at our bank.

And finally, our bank has to be able to pay interest, a function that takes no arguments.

    def pay_interest(self): 
        for a in self.accounts: 
            a.deposit(a.balance * a.interest) 

Are we finished? No, our bank should have some protection so that it shouldn’t go bankrupt.

    def too_big_to_fail(self): 
        return len(self.accounts)>=2 

Attribute Lookup Practice
We can practice our understanding of objects, classes and inheritance. We solve problems like WWPD by using
an environment diagram that has modified rules.

When an instance is created on a class that has no __init__ , the instance never has instance attributes.

Multiple Inheritance
This occurs when a subclass has multiple base classes.

Let’s create a new type of account:

class SavingsAccount(Account): 
    deposit_fee = 2 
    def deposit(self, amount): 
        return Account.deposit(self, amount -self.deposit_fee) 

A class may inherit from multiple base classes in Python. Let’s say a clever bank executive creates a new type of
account:



Low interest rate of 1%
A $1 fee for withdrawals
A $2 fee for deposits
A free dollar when you open your account.

class AsSeenOnTVAccount(CheckingAccount,SavingsAccount): 
    def __init__(self,account_holder): 
        self.holder = account_holder 
        self.balance = 1 

What happens when I create this account?

>>> such_a_deal = AsSeenOnTVAccount("John") 
>>> such_a_deal 
1 
>>> such_a_deal.deposit(20) 
19 
>>> such_a_deal.withdraw(5) 
13 

It’s easy to see the order in which the inheritance is inherited. The important thing you should remember is you
should look at the subclass before the base class.

Complicated Inheritance
Multiple inheritance tends to make programs very complicated, so you should only use it very sparingly, to
make your programs clear and readable.


