
CS61A Lecture 19
Friday, October 11th, 2019

Announcements
Several deadlines pushed back.
Online discussion section today at 5-6:30pm via Zoom.

String Representations
In the object-oriented programming metaphor, we say an object should behave like real-world objects they
represent. One way they do that is how they produce string representations of itself.

In Python, this distinction is built into the language. All objects produce 2 string representations:

1. The __str__  string is meant to be legible to humans, and it is often just text.
2. And the __repr__  string is meant to be legible to the interpreter, which means it should be an

expression.

The str  and repr  strings are often the same, but not always, because Python was fundamentally designed
to have its code be human-readable.

The __repr__  String for an Object

The repr  function returns a Python expression as a string that evaluates to an equal object.

If we call help  on repr , this is what it returns:

repr(object) -> string 
Return the canonical string representation of an object.  
For most object types, eval(repr(object)) == object. 

The result of calling repr  on a value is what Python prints in an interactive session. For example,

>>> 12e2 
1200.0 
>>> print(repr(12e2)) 
1200,0 

Some objects do not have a simple Python-readable string, which are usually compound objects. For example,
functions and classes:

>>> repr(min) 
<built-in function min> 

There is no way to put min  into a Python expression, so it just returns a stand-in.



The __str__  String for an Object

Human interpretable strings are useful as well, because sometimes we want to communicate things to the user.

For example,

>>> from fractions import Fraction 
>>> half = Fraction(1,2) 
>>> repr(half) 
'Fraction(1,2)' 

A call to repr  just returns the class constructor itself, byt that’s not how humans write fractions.

>>> str(half) 
'1/2' 

str  is a built-in function that takes an object and returns a string that is a human-readable representation of
the object itself.

The result of calling str  on the value of an expression is what Python prints out when you call print .

>>> print(half) 
1/2 

Notice str  has quotation marks while print  does not.

>>> eval(str(half)) 
0.5 

This just happens to be coincidentally a float, because str  strings aren’t usually designed to be able to be
evaluated.

>>> s = "Hello, World" 
>>> s 
'Hello, World' 
>>> print(repr(s)) 
'Hello, World' 
>>> print(s) 
Hello, World 
>>> print(str(s)) 
Hello, World 
>>> str(s) 
'Hello, World' 
>>> repr(s) 
"'Hello World'" 

What’s going in with repr ? repr  is giving back a string that when evaluated, returns the original string.

>>> repr(repr(repr(s))) 
'\'"\\\'Hello, World\\\'"\'' 



This is a mess because the backslash is an escape key that helps Python separate which quotation marks are on
which level.

>>> eval(s) 
NameError: name 'Hello' is not defined 

Polymorphic functions
Polymoprhic functions are functions that apply to many different forms of data.

str  and repr  are both polymorphic; they apply to any object. How can this work?

repr  invokes a zero-argument method __repr__  on its argument.

>>> half.__repr__() 
'Fraction(1, 2)' 

It’s really the Fraction  class that knows how to print out the repr , not the repr  method.

str  invokes a zero-argument method __str__  on its argument.

>>> half.__str__() 
'1/2' 

So there’s a really important idea, like str  or repr , that really doesn’t have much logic itself, but defers to
the argument that comes in to decide what to do by invoking a method on it.

Implementing repr  and str .

The behavior of repr  is slightly more complicated than invoking __repr__  on its argument:

An instance attribute called __repr__  is ignored! Only class attributes are invoked by the repr
function.
How would we implement this behavior?

def repr(x): 
    return type(x).__repr__(x) 

type(x)  skips instance attributes by looking up the type of the argument, then calls the __repr__
function, which is not a bound method, so we have to explicitly pass in x .

The behavior of str  is even more complicated:

An instance attribute called __str__  is ignored! Only class attributes are invoked by the repr
function.
If no __str__  attribute is found, uses repr  string.
str  is a class, not a function, so when you’re calling str, , you’re calling the built-in constructor for the

default string type.



How would we implement this? Let’s use an example:

>>> class Bear: 
...    def __repr__(self): 
...        return 'Bear()' 
...         
>>> oski = Bear() #Let's try to invoke this several different ways 
>>> print(oski) 
Bear() 
>>> print(str(oski)) 
Bear() 
>>> print(repr(oski)) 
Bear() 
>>> print(oski.__str__()) 
Bear() 
>>> print(oski.__repr__()) 
Bear() 

So, right now, they all return exactly the same thing, because the str  and repr  functions both refer to the
same __repr__  method.

What if we changed our implementation?

>>> class Bear: 
...    def __repr__(self): 
...        return 'Bear()' 
...    def __str__(self): 
...        return 'a bear' 
...         
>>> oski = Bear() #Let's try to invoke this several different ways 
>>> print(oski) 
a bear 
>>> print(str(oski)) 
a bear 
>>> print(repr(oski)) 
Bear() 
>>> print(oski.__str__()) 
a bear 
>>> print(oski.__repr__()) 
Bear() 

We can observe the different behavior of here. Just printing oski  prints whatever is defined in the __str__
method, as well as anytime we explicitly call for str .

To get even more variety, we can define a new __init__  method.

>>> class Bear: 
...    def __init__(self): 
...        self.__repr__ = lambda: 'oski' 
...        self.__str__ = lambda: 'this bear' 
...    def __repr__(self): 
...        return 'Bear()' 



...    def __str__(self): 

...        return 'a bear' 

...         
>>> oski = Bear() #Let's try to invoke this several different ways 
>>> print(oski) 
a bear 
>>> print(str(oski)) 
a bear 
>>> print(repr(oski)) 
Bear() 
>>> print(oski.__str__()) 
this bear 
>>> print(oski.__repr__()) 
oski 

Printing out oski  and the str  of oski  will always result in the same thing, as there’s no way to make
them different.

The repr  and str  functions ignore the instance attribute and go straight to the class. But the traditional
name lookup will check the instance attributes first.

As a final step to prove our understanding, let’s write our own repr  and str  functions:

def repr(x): 
    return type(x).__repr(x)__ 
 
def str(x): 
    t = type(x) 
    if hasattr(t, '__str__'): 
        return t.__str__(x) 
    else: 
        return repr(x) 

Interfaces
We said that central to OOP metaphor is that objects pass messages between each other, and the method in
the language is that objects look up attributes on each other.

The attribute lookup rules allow different data types to respond to the same message, just by having the same
attribute name,

A shared message (attribute name) that elicits similar behavior from different object classes is a powerful
method of abstraction.

An interface is a set of shared messages, along with a specification of what they mean.

Example:
 Classes that implement __repr__  and __str__  methods that return Python-interpretable and human-

readable strings implement an interface for producing string representations.

Let’s see if we can build a class that exhibits this interface:



class Ratio: 
    def __init__(self,n,d): 
        self.numer = n 
        self.denom = d 
     
    def __repr__(self): 
        return 'Ratio({0},{1})'.format(self.numer, self.denom) 
        # The {0} and {1} are gaps that can be filled with the format method 
         
    def __str(self)__: 
        return '{0}/{1}'.format(self.numer,self.denom) 

This all works the same way as the built-in fraction class we saw earlier.

Special Method Names
This is a topic special to the Python language. Certain names are special because they have built-in behavior.

These names always start and end with two underscores, that just indicates it interacts with the built-in object
system in some way.

__init__  is a regular method other than the fact it is invoked automatically when an object is
constructed.
__repr__  is invoked to display an object as a Python expression.
__add__  is a two-argument method invoked to add one object to another.
__bool__  is a method invoked to convert an object to True or False.
__float__  is a method invoked to convert an object to a float.

For example,

>>> zero, one, two = 0, 1, 2 
>>> one + two 
3 
>>> bool(zero) 
False 
>>> one.__add__(two) 
3 
>>> zero.__bool__() 
False 

What happens when you have two instances of user-defined classes, added together? There are two methods,
__add__  and __radd__ .

add  takes the argument on the left and adds it to the one on the right, while radd  takes the argument on
the right and adds it to the one on the left.

For example, we could extend our ratio class before:

>>> Ratio(1,3)+Ratio(1,6) 
Ratio(1,2) 



How can we do this?

    def __add__(self,other): 
        n = self.numer * other.denom + self.denom * other.numer 
        d = self.denom * other.denom 
        g = gcd(n,d) 
        return Ratio(n//g,d//g) 
     
def gcd(n,d): 
    while n!= d: 
        n,d = min(n,d), abs(n-d) 

There’s one flaw with this method as it is, because we always assume that we are adding two ratios together.
We can extend our definition of __add__ :

def __add__(self,other): 
    if isinstance(other,int): 
        n = self.numer + self.denom * other 
        d = self.denom  
    elif isinstance(other,Ratio): 
        n = self.numer * other.denom + self.denom * other.numer 
        d = self.denom * other.denom 
    g = gcd(n,d) 
    return Ratio(n//g,d//g) 
     
__radd__ = __add__ 

What happens if we try to add a float? It doesn’t seem to make sense that we try to return a ratio again, so let’s
just return a float.

def __add__(self,other): 
    if isinstance(other,int): 
        n = self.numer + self.denom * other 
        d = self.denom  
    elif isinstance(other,Ratio): 
        n = self.numer * other.denom + self.denom * other.numer 
        d = self.denom * other.denom 
    elif isinstance(other,float): 
        return float(self) + other 
    g = gcd(n,d) 
    return Ratio(n//g,d//g) 
     
__radd__ = __add__ 

But how do we define the float  function?

def __float__(self): 
    return self.numer / self.denom 

We have used two important ideas here in this example. The __add__  method shows us type dispatching,
where we inspect the type of the argument coming in to decide what to do.



The float  instance is called type coercion, where we take a value and convert it to another type in order to
be able to combine it with some other value.


