
CS61A Lecture 22
Friday, October 18th, 2019

Announcements
Extra office hours today from 4 to 8pm in the Wozniak Lounge.
Homework 5 due next Tuesday.
Midterm 2 covers content through Wednesday, 10/16.

No BTree class on this midterm.
You can bring 2 two-sided sheets of handwritten notes.
Different treatment of orders of growth.
Monday will be review of concepts and exams.
Seats will be assigned next Wednesday.
No lecture on 10/23, and no discussion next week.

Decomposition
Today, we will be working with a slightly larger example than usual for a lecture. We will talk through why the
61A Projects are laid out the way they are, to prepare you for 61B projects, in which you will have to design
your project layout.

One way to do that is through modular design, in which you want to design your project by modular parts
through abstraction barriers, instead of worrying about minor details in some other function when writing
code.

Separation of Concerns
A design principle in which you isolate different parts of the program that address different concerns.

This way, you can build modular components can be developed and tested independently. In a perfect world,
you can write the components, specify how they fit together, and your program works!

The Hog project was designed this way!

Component: Hog game
simulator

Component: Game
commentary

Component: Player strategies

Game rules Event descriptions Decision rules

Ordering of events
State tracking to generate
commentary

Strategy parameters (e.g. margins and
number of dice)

State tracking to determine
the winner

You can see that each component is built independently of each other. The simulator doesn’t care how its
results are printed, and the game commentary doesn’t care how the player plays.

So is the Ants project:

Component: Ants game
simulator

Component: Actions
Component: Tunnel
structure

Order of actions
Characteristics of different ants and
bees

Entrances and exits

Food tracking Locations of insects

Game ending conditions

Same goes for Ants! Let’s use an example to see how a program built from scratch.

Restaurant Search Data
Yelp used to release open data sets about restaurants near the Berkeley campus, and there is still some older
data which you can find on cs61a.org under the filename 22.zip.

Each piece of data under the business listings looks like this:

It consists of:

Business ID: A randomly generated, unique ID for each restaurant.
Name: the name of the restaurant
Stars: the star rating, out of five
Price: The dollar sign category, with 1 being the cheapest

And there is also a section for reviews:

Let’s build a program that can take a restaurant, and recommend similar ones. What is similar? We’ll have to
decide what that is.

A lot of files you download from the Internet will come in this format, which looks like Python dictionaries, but
is actually in a format called JSON (JavaScript Object Notation). Python can read it though, which is fine.

So let’s begin with the interface:

results = search('Thai')
for r in results:
 print(r, is similar to', r.similar(3))

OK. Now that we know how our program will work, let’s build the code to make sure this works.

{"business_id": "gclb3ED6uk6viWlolSb_uA", "name": "Cafe 3", "stars": 2.0, "price": 1, ..

{"business_id": "gclB3ED6uk6viWlolSb_uA", "user_id": "xVocUszkZtAqCxgWak3xVQ", "stars":

def search(query, ranking=lambda r: -r.stars):
 results = [r for r in Restaurant.all if query in r.name]
 return sorted(results, key=ranking)

We haven’t built the restaurants class yet, but now we know it will have a name attribute and a class attribute
called all which is an iterable. And we will pass in a default way to rank the results as a key function into
the sorted function (which is built into Python). The key function is a function that we can pass in to
customize the way a list is sorted.

Now, let’s build the restaurant class:

class Restaurant:

 all = []

 def __init__(self,name,stars):
 self.name, self.stars = name, stars
 Restaurant.all.append(self)

 def __repr__(self):
 return self.name

We don’t yet need to actually make the similar yet, but let’s just test if our program’s basic function works.

>>> x = Restaurant('Thai Basil',5)
>>> y = Restaurant('Thai Delight',5)
>>> x
Thai Basil

And finally, we also need to figure out what it means to be similar to another restaurant.

Here’s an idea for what similarity does: the same people reviewing 2 restaurants means their style may be
pretty similar.

 def reviewer_overlap(r,s):
 "Number of users who reviewed both"
 return len([u for u in r.reveiewers if u in s.reviewers])

And we need to update our __init__ function to include reviewers:

 def __init__(self,name,stars):
 self.name, self.stars = name, stars

 def similar(self,k,similarity=reviewer_overlap):
 "Return the K most similar restaurant to SELF."
 others = list(Restaurant.all) #We make a copy to not delete this restaurant from
 others.remove(self)
 f = lambda r: similarity(r,self) #f is a curried similarity function because sim
 return sorted(others, key=f, reverse=True)[:k]

 self.reviewers = reviewers #list of user_ids
 Restaurant.all.append(self)

Now we can’t just keep using fake data. Let’s load that real data from the JSON file:

import json

for line in open('reviews.json'):
 r = json.loads(line)
 business_id = r['business_id']
 if business_id not in reviewers_by_restaurant:
 reviewers_by_restaurant[business_id] = []
 reviewers_by_restaurant[business_id].append(r['user_id'])

for line in open('restaurants.json'):
 r = json.loads(line)
 reviewers = reviewers_by_restaurant[r['business_id']]
 Restaurant (r['name'],r['stars'],reviewers)

This program now works! But it’s pretty slow. The big part of this is the reviewer_overlap function, since it
goes through two lists twice. Thus, it is quadratic time.

Linear-Time Intersection of Sorted Lists
Let’s optimize our code:

for line in open('restaurants.json'):
 r = json.loads(line)
 reviewers = reviewers_by_restaurant[r['business_id']]
 Restaurant (r['name'],r['stars'],sorted(reviewers))

Why does the sorted fix our code?

Well, let’s take two sorted lists:

3,4,6,7,9,10
1,3,5,7,8

Well, since 1 is smaller than everything else in the first list, it can immediately skip to the second value. 3
matches, and it’s smaller than 4, so the function now moves to 5. So on and so forth. You never need to check
the entire list twice! It is linear because the maximum time is just the combined length of the two lists. We’re
always moving forward in one list or the other

Let’s make a function that takes advantage of this:

def fast_overlap(s,t):
 """Return the overlap between sorted S and sorted T."""

 i, j, count = 0, 0, 0
 while i < len(s) and j < len(t):
 if s[i] == t[j]:

 count, i, j = count + 1, i + 1, j + 1
 elif s[i] < t[j]:
 i = i + 1
 else:
 j = j + 1
 return count

