
CS61A Lecture 23
Monday, October 21st, 2019

Announcements
Midterm study guide is out. Includes minor revision to MT1 guide.
No lecture on Wednesday, and video-only lecture on Friday by Allan Kaye, who created the first OOP
language.
No discussion this week.

Data examples
We’re just gonna review today with some old exam questions, and revise some commonly forgotten concepts.

Lists
Lists can have names assigned to them through environment diagrams, and they are mutable.

Assume we start with the following code before example:\

s = [2,3]
t = [5,6]

Operation Example Result

append adds one element to a list.
s.append(t)
t = 0

s = [2,3,
[5,6]]

 t=0

extend adds all elements in one list to another list.
 (extend does the same thing as +=)

s.extend(t)
t[1] = 0

s =
[2,3,5,6]

 t = [5,0]

addition and slicing create new lists containing existing elements

a = s + [t]

b = a [1:]
 a[1] = 9

 b[1][1] = 0

s = [2,3]
 t = [5,0]
 a = [2, 9,

[5, 0]]
 b = [3, [5,

0]]

list function also creates a new list containing existing
elements

t = list(s)
 s[1] = 0

s = [2,0]
 t = [2,3]

slice assignment replaces a slice with new values
s[0:0] = t

 s[3:]=t
 t[1]=0

s =

[5,6,2,5,6]
 t = [5,0]

Operation Example Result

pop removes and returns and the last element t = s.pop()
s = [2]

 t = 3

remove removes the first element equal to the argument
t.extend(t)

 t.remove(5)
s = [2,3]

 t = [6,5,6]

slice assignment can remove elements from a list by assigning to
an empty slice

s[:1] = []
 t[0:2] = []

s = [3]
 t = []

What happens when you append lists to each other?
 Say we ran the following code.

>>> s, t = [2,3], [5,6]
>>> s.append(t)
>>> t.append(s)
>>> print(s)
[2,3,[5,6,[...]]]
>>> s[2][2][2][2][2][1]
6

Objects
Instance attributes are found before class attributes, and class attributes are inherited. Check the slides for a
more detailed example.

Linked Lists
The attributes of a linked list can be changed. Let’s review it with the Link class we defined before.

class Link:
 empty = ()

 def __init__(self,first,rest=empty):
 self.first = first
 self.rest = rest

 def __getitem__(self,i):
 if i == 0:
 return self.first
 else:
 return self.rest

 def __len__(self):
 return 1 + len(self.rest)

 def __repr__(self):
 if self.rest:
 rest_str = ', ' + repr(self.rest)
 else:

 rest_str = ''
 return 'Link{0}{1}'.format(self.first,rest_str)

Attribute assignment statements can change the first and rest attributes of a Link, and the rest of a linked list
can contain the linked list itself as a sublist.

>>> s = Link(1,Link(2,Link(3)))
>>> s.first = 5
>>> t = s.rest
>>> t.rest = s
>>> s.first
5
>>> s.rest.rest.rest.rest.rest.first
2

Set Mutation
We can also implement operations that change a set. Let’s say we have an ordered linked list u .

>>> u = Link(1,Link(3,Link(5)))

We want to implement a function add , different from join , because we want to mutate u to be a set that
includes the number v , while join would create a new set that doesn’t affect 0 .

add(u,0)

One way to do this is to edit the original instance of 1 to 0, create a new instance of Link with first as 1,
and then re-bind this to be the rest of the link.

add(u,3)

We don’t do anything because we realize 3 is already in u .

add(u,4)

We move along the list until we find a value bigger than 4, edit the value to 4, and create a new instance with
the original value of that instance.

add(u,6)

We move along the list until we get to the end and nothing is smaller than the value v , thus, we add to the
end of the linked list.

How can we implement this function?

def add(s,v):
 assert not empty(s)
 if s.first > v:

 s.first, s.rest = __, __
 elif s.first < v and empty(s.rest)

 elif s.first < v:

 return s

SOLUTION ##

def add(s,v):
 assert not empty(s)
 if s.first > v:
 s.first, s.rest = v, Link(s.first, s.rest)
 elif s.first < v and empty(s.rest):
 s.rest = Link(v,s.rest)
 elif s.first < v:
 add(s.rest,v)
 return s

