
CS61A Lecture 3
Saturday, August 31st 2019

Special video-only lecture

How rules of evaluation in Python can lead to interesting behavior. Questions like:
What happens if I use a name twice in two different contexts?

Looking at a lot of environment diagrams
The program that generates them is new: code.cs61a.org
Click the bug button in the top-right corner to use the new environment diagram
tutor.cs61a.org is still available with the old environment.

Hog project will be released Monday and due on Thursday, September 12th.
First part is individual, the rest can be done with a partner.

Print and None
If you type an expression into the interpreter, ti will then display the value of the expression.

The same case occurs when you call print .

>>> -2
2
>>> print(-2)
-2

Two different things have happened here, even though it looks the same.

>>> 'Go Bears!'
'Go Bears!'
>>> print('Go Bears!')
Go Bears!

You can see one difference here, as the print has no quotation marks, while directly evaluating shows the string
value reproduced directly from the literal.

Another difference occurs when you type None , where nothing will occur:

>>> None

Meanwhile,

>>> print(None)
None

Python has rules for automatically displaying the value of anything you type in. None is a special case where
nothing gets displayed automaticallu, but printing it can make it automatically appear.

Print can also show values separated by spaces.

Here’s an interesting case. What happens when you print(print(<something>)) ?

>>> print(print(1),print(2))
1
2
None None

Let’s understand what happened.

None indicates that nothing has been returned by a function in Python.

A function that does not explicitly return a value will return None .

None is not displayed automatically by the interprter as the value of an expression.

Take this example:

>>> def does_not_square(x):
 x*x

This function does not have a return value.

>>> does_not_square(4)

The value None is not displayed according to the third rule.

>>> sixteen = does_not_square(4)

The name sixteen is now bound to the value None .

>>> sixteen + 4

This does not return 20 like it would if you’d properly written the function, but instead a TypeError , because
you’ve tried to add a None to an int . In other words, you’ve tried to add something to nothing.

This is because there are two kinds of functions, pure functions and non-pure functions.

Pure functions are functions like abs , which is in essence a closed pipe that only outputs the return value. It
has no side effects.

Non-pure functions are functions like print . The pipe that represents a function with an output and an input
also has a leak, which is the side effect. In print 's case, it takes an input, displays whatever is between the
brackets, then returns None . In other words, it did something other than return an output.

A side effect isn’t a value, it’s anything that happens as a consequence of calling a function. This is the cause
behind the interesting behavior when print is nested.

Let’s return to the original example of:

print(print(1),print(2))

According to the rules, we first evaluate the operator, which is print .

The first operand is another call expression, which we evaluate by evaluating its operator and operand. When
we call print on 1, we have a side effect of displaying the number 1. While evaluating this operand, we
displayed the number 1, but this 1 is not the value of anything. We did get a value for this expression, but the
value was None . Next, we do the same thing to the right. So now, we pass in None None as the input to the
parent print , and this displays None None , and it itself returns a value of None , which doesn’t get
displayed.

Multiple Environments
When Python evaluates a program, different expressions can be evaluated in different environments. There can
be multiple environments in the same environment diagram. We’re gonna look at one of the examples showed
last time in detail, to understand what exactly is going on.

Life Cycle of a User-Defined Function
def statements creates functions, spans multiple lines, has a name, formal parameters separated by

commas, and a body identified by the indented lines after the first.
What happens? A new function is created, and the name is bound to that function in the current
frame. None of the computation in the function is done, this only happens when the function is called.

Call expressions are when functions are called by their name. The operands are the values in the
parentheses.

What happens? The operators and operands are evaluated. The function is called on the arguments.
Calling/applying the function on the operands:

What happens? A new frame is created, in which the formal parameters are bound to the arguments
we are passing in, and the body is executed in that new environment.

Take the following example.

square(square(3))

The environment diagram will first show that two new frames are created, f1 and f2 , in which they both
have the variable x and a return value, but the first x is 3 and the second is 9 .

Why isn’t the parent of f2 f1 , when f2 is called within f1 ?
 The parent frame is the frame in which the function is defined. square is defined in the global

frame, therefore the new frames created by calling it will have the global frame as their parents.

An environment is a sequence of frames.

The global frame alone
A local, then the global frame

In the above example, there are three environments:

1. The global frame alone

2. The f1 frame, followed by the global frame
3. The f2 frame, followed by the global frame

In this case, there are three different environments, and none that include all three, but one environment per
frame.

If you start with a particular frame, you can always find the whole environment, just by following the parents of
the frames.

Let’s say we are interested in the frame f2, so the next frame is its parent, the global frame. Global frames are
always the last frame because they never have any parents.

Names have no meaning without these environments; these are the things that endow mul , x and
whatever names with some sort of meaning.

Every expression is evaluated in the context of an environment, which allows us to figure out what names
mean.

A name evaluates to the value bound to that name in the earliest frame of the current environment in
which that name is found.

In square(square(3)) , you will find two names, mul and x . We first look for x in the current
environment, and we find it in the first frame, which is the earliest frame of the environment in which the name
is found. When we look up mul , we first look in f2 , where mul isn’t there, and then we look in the global
frame, where mul is, bound to the function that multiplies.

Names have different meanings in different environments, because each frame can have different
meanings for the same name. A call expression and the body of the function being called are evaluated in
different environments. For example,

def square(square):
 return square*square
square(4)

does in fact return 16, because the name square and the function square are evaluated in different
environments. square(...) is evaluated in the global frame, while (square) is evaluated in the f1
frame, where there is a different binding for square , and thus the binding in the global frame is never
encountered.

Miscalleneous Python Features

How Operators Work
Operators such as + or * haven’t really been discussed. How they really work is complicated and will be saved
for later in the course, so for now, think of them as short hand for calling built-in functions such as add and
mul .

Let’s now talk about division. There are two kinds of division:

True division: 2019/10 gives 201.9

Integer division gives only the number of times the divisor goes into the quotient: 2019//10 gives
201 , not including any remainer

The corresponding functions are truediv and floordiv .

We can get the remainder with the mod operator, % or the mod operator.

Why would we want these functions? Because floordiv and mod are exact, while truediv actually only
returns an approximation.

You can also return multiple values from a function, which will be useful in the project, by separating them by a
comma.

def divide(n,d):
 return n//d, n%d

Doctests
It’s a good idea to put text explaining what the file and code does by using what we call a doctest.

We usually put some documentation of what a function does by using triple quotation below the function
signature.

def square(x):
 """Squares a number.
 >>> square(2)
 4
 >>> square(16)
 256
 """
 return x*x

Within the doctest, there is an example interactive session that we can trigger using:

python3 -m doctest (filename).py

If everything is correct, you should see no output in your terminal. If you’d like more details:

python3 -m doctest -v (filename).py

which will tell you everything that happened, which will show you what it tried and what happened as a result.

Default Values
When you’re defining a function, you can assign a default value that is used when nothing is bound to a formal
parameter.

For example,

def divide(n,d=10)]

will assign d to 10 when no value is given to it by the user. You’re not assigning d to 10 in the body unless
the user passes in no argument. This will also be used in the project as well.

Conditional Statements
First, let’s talk about statements. We’ve seen assignment and def statements.

A statement is executed by the interpreter to perform a function.

Statements can be compound:

<header>:
 <statement>
 <statement>
<separating header>:
 <statement>
 <statement>

The first header determines a statement’s type. The header of a caluse “controls” the suite that follows.

def statements are compound statements.

A suite is a sequence of statements. To execute a suite means to execute its sequence of statements in order.

Execution rule for a sequence of statements:

1. Execute the first statement.
2. Unless directed otherwise, execute the rest.

The Conditional Statement
For example, let’s define the function abs from scratch:

def abs(x):
 """Return the absolute value of x.""""
 if x<0:

 return -x
 elif x==0:
 return 0
 else:
 return x

Taking the execution rule from earlier, each caluse is considered in order. We evaluate the header’s expression;
if it is a true value, execute the suite and skip the remaining clauses. The remaining clauses are never executed.

Syntax Tips

1. Always start with an “if” clause.
2. You can have zero or more “elif” clauses.
3. You can have zero or one “else” clause at the end.

Boolean Contexts
George Boole was a logician and an early founder of computer science. George is interested in Boolean
contexts, where all that matters about one particular expression is whether it is true or false.

The earlier code has two Boolean contexts, the if and the elif.

There are false values in Python: False , 0, '' , None , and others that we don’t need to know yet.
Anything else is a true value, so something like if 3 is the same as saying if True .

Iteration
One way we can repeat the same statement many times is a While statement. It too is a compound
statement, that within its body, contains something we want to execute multiple times.

For example:

x=3
While x!=0:
 x=x-1
 print(x)

This will count down from x to 0.

Execution rule for while statements:

1. Evaluate the header’s expression.
2. If it is a true value, execute the whole suite, then return to step 1.

This also has Boolean contexts like an if statement.

In the example above, notably, we do not stop the suite when x becomes 0; we first execute the whole suite,
printing 0 along the way, and the checking again if x is 0. It is, so the loop ends when the False value is
encountered.

Testing

Earlier, we talked about how we can use doctests to test our programs.

Testing a function is the act of verifying the function’s behavior matches expectations. Our language is now
sufficiently complex that we need to start testing our implementations.

A test is a mechanism for systematically performing this vertification, typically another function containing one
or more sample calls to the function being tested. The returned value is then verified against an expected
result. Tests involve selecting and validating calls with specific argument values. Tests also serve as
documentations, they demonstrate how to call a function and what argument values are appropriate.

Assertions
Programmers use assert statements to verify expectations, such as the output of a function being tested.
An assert statement has an expression in a Boolean context, followed by a quoted line of text in quotes that
will be displayed in the expression evaluates to a false value.

>>>assert fib(8)==13, 'The 8th Fibonacci number should be 13'

When the expressiong being asserted to a true value, executing an assert statement has no effect. When it
is a false value, assert causes an error that halts execution.

A test function for fib should have several arguments, including extreme values of n .

>>> def fib_test():
 assert fib(2)==1, "The 2nd Fibonacci number should be 1"
 assert fib(3)==1, "The 3rd Fibonacci number should be 1"
 assert fib(50)==7778742049, "Error at the 50th Fibonacci number"

Tests are usually written either in the same file, or a neighboring file with the suffix _test.py , rather than
directly into the interpreter.

Doctests can be used to verify interactions with a function.

We can use the doctest module; below, the globals function returns a representation of the global
environment, which the interpreter needs in order to evaluate expressions.

>>> from doctest import testmod
>>> testmod()
TestResults(failed=0, attempted=2)

To verify the doctest interactions for a single function, we use a doctest function called
run_docstring_examples , which is unfortunately a bit complicated to call. The first argument is the

function to test, the second the result of the expression globals() , a built-in function that returns the global
environment, and the third argument is True to indicate we would like “verbose” output: a catalog of all tests
run.

When the return value of a function does not match the expected result, the run_docstring_examples
function will report this problem as a test failure.

When writing Python in files, all doctests in a file can be run with the doctest command line option as
discussed earlier.

The key to effective testing is to write and run tests immediately after implementing new functions. It is even
good practice to write some tests before you implement, in order to have some example inputs and outputs in
your mind. A test that applies a single function is called a unit test. Exhaustive unit testing is a hallmark of
good program design.

