
CS61A Lecture 32
Friday, November 15, 2019

Announcements
Homework 9 is due Thursday 11/21.
Scheme Recursive Art contest entries are due Monday 12/2.

Declarative Programming
Today, we are moving to the last part of the course, which means we are leaving Scheme behind. We will learn
an entirely new programming language. The idea is not just to learn new languages, but new styles. We learned
about object-oriented programming with Python, functional programming with Scheme, and today we will
learn about declarative programming.

Database Management
Database systems are used everywhere. They are used to maintain information over a large number of entries,
for examples, a database of all students in Berkeley.

Databasement management systems (DBMS) are important, heavily used and interesting! A table is a collection
of records, which are rows that have a value for each column.

Latitude Longitude Name

38 122 Berkeley

42 71 Cambridge

45 93 Minneapolis

A table has rows and columns. A column has a name and a type. And a row has a value for each column.

The standard programming language for a database is the Structured Query Language (SQL). SQL is by some
measures, perhaps the most widely used programming language in the world, because many people in all
fields use it, not just programmers.

What is Declarative Programming?
SQL is what we call a declarative programming language.

Declarative Language Imperative Language

Examples include SQL and Prolog Examples include Python and Scheme

A “program” is a description of the desired result
A “program” is a description of computational
processes

Declarative Language Imperative Language

The interpreter figures out how to generate that
result

The interpreter carries out the execution/evaluation
rules

We will not be building an interpreter that figures out what’s the fastest way to do something. If you’re
interested, Berkeley offers CS186, a class that does just that.

Here is an example of SQL code:

create table cities as
 select 38 as latitude, 122 as longitude, "Berkeley" as name union
 select 42 , 71 , "Cambridge" union
 select 45 , 93 , "Minneapolis"

This code tells SQL to create a table just like the one above. We don’t need to rewrite latitude and longitude in
each select statement because we already did above. Awesome!

select "west coast" as region, name from cities where longitude >= 115 union
select "other" , name from cities where longitude < 115;

This creates a new table that sorts the locations above into locations on the West Coast, and those that aren’t.

SQL Overview
The SQL language is an ANSI and ISO standard, which is the only officially recognized SQL implementation.
However, many database management systems will implement custom variations that include specialized
features.

However, there are some basic features that will likely work across any implementation:

A select statement creates a new table, either from scratch or by projecting a table
A create table statement gives a global name to a table
Lots of other statements exist: analyze , delete , explain , insert , replace , update , etc.
Most of the important action is in the select statement, as such we will primarily be focusing on that in
CS61A.

SQLite
In this class, we will be using a subset of SQL called SQLite. Download version 3.8.3 or later. You can also use
SQLite on our online interpreter: code.cs61a.org/sql

Selecting Value Literals
For our demos, we will be manipulating a databse of Professor DeNero’s (imaginary) dogs! They’re named after
presidents (randomly! No political meaning behind it whatsoever).

A select statement always includes a comma-separated list of column descriptions. A column description is
an expression, optionally followed by as and a column name.

select [expression] as [name], [expression] as [name];

Selecting literals creates a one-row table. The union of two select statements is a table containing the rows
of both of their results.

select "delano" as parent, "herbert" as child
select "abraham" , "barack" union
select "abraham" , "clinton" union
select "fillmore" , "abraham" union
select "fillmore" , "delano" union
select "fillmore" , "grover" union
select "eisenhower" , "fillmore";

Naming Tables
SQL is often used as an interactive language. The result of a select statement is displayed to the user, but not
stored. A create table statement gives that result a name, so that we can access it later on:

create table [name] as [select statement];

So to give a name to our previous table:

create table parents as
 select "delano" as parent, "herbert" as child union
 select "abraham" , "barack" union
 select "abraham" , "clinton" union
 select "fillmore" , "abraham" union
 select "fillmore" , "delano" union
 select "fillmore" , "grover" union
 select "eisenhower" , "fillmore";

And here’s that table as SQL would show it:

parent child

parent child

abraham barack

abraham clinton

delano herbert

fillmore abraham

fillmore delano

fillmore grover

eisenhower filmore

Projecting Tables
A select statement can specify an input table using a from clause.

A subset of the rows of the input can be selected using a where clause.

An ordering over the remaining rows can be declared using an order by clause.

Column descriptions determine how each input row is projected to a result row.

What order are these statements executed in? That’s not up to you! That’s up to the interpreter to figure out
which is fastest.

select [expression] as [name], [expression] as [name]

select [columns] from [table] where [condition] order by [order];

So for our previous table:

select child from parents where parent = "abraham";

This statement returns a one-column table with the column “child” containing all the children whose parents
were “abraham”. It does not show the “parent” column.

child

barack

clinton

Or we could do this:

select parent from parents where parent > child

This statement returns a one-column table with the column “parent” containing all the parents who have
children with “lesser” names (alphabetically) than them.

parent

filmore

filmore

And you can show the full table with:

select * from [table];

Arithmetic
You can even perform arithmetic in SQL. In a select expression, column names evaluate to row values.
Arithmetic expressions can combine row values and constants.

create table lift as
 select 101 as chair, 2 as single, 2 as couple union
 select 102 , 0 , 3
 select 103 , 4 , 1

Names in SQL that you can access are names of tables, or names of columns in tables.

select chair, single + 2 * couple as total from lift;

chair total

101 6

102 6

103 6

Discussion Question
 As it turns out, every number can be represented in terms of powers of two. You will start with a table

ints that describes how to sum powers of 2 to form various integers.

create table ints as
 select "zero" as word, 0 as one, 0 as two, 0 as four, 0 as eight union
 select "one" , 1 , 0 , 0 , 0 union
 select "two" , 0 , 2 , 0 , 0 union
 select "three" , 1 , 2 , 0 , 0 union
 select "four" , 0 , 0 , 4 , 0 union
 select "five" , 1 , 0 , 4 , 0 union
 select "six" , 0 , 2 , 4 , 0 union
 select "seven" , 1 , 2 , 4 , 0 union
 select "eight" , 0 , 0 , 0 , 8 union
 select "nine" , 1 , 0 , 0 , 8;

1. Write a select statement for a two-column table of the word and value for each integer.
2. Write a select statement for the word names of the powers of two.

Solutions

1. select word, one + two + four + eight as value from ints order by value ;
2. select word from ints where one + two/2 + four/4 + eight/8 = 1 ;

There were maybe easier ways to do the things we did above, especially the second question: we could’ve just
pulled out the names of the column headings, just not with a select statement. We will cover more of them
as we go further in the class.

SQL is built to be resillient in the sense that it expects users to forget things, so it tries to fill in info you don’t
specify in certain cases. This can be good, but may also lead to unexpected behavior. Be careful!

