
CS61A Lecture 33
Monday, November 18, 2019

Announcements
No live lab or office hours during Thanksgiving week: 11/25 and 11/26.
Video-only lecture Monday 11/25.
Optional Scheme Recursive Art Contest entries are due Monday 12/2.

More SQL
Where SQL becomes interesting is when you have two tables with different information, allowing you to
combine them and get info from both.

As we saw from Lecture 32, we used the example of John the Patriotic Dog Breeder. But what if we wanted
more info on each dog, and not just which dogs are parents and children?

Joining Two Tables
Two tables A and B are joined by a comma to yield all combos of a row from A and a row from B .

CREATE TABLE dogs AS
 SELECT "abraham" AS name, "long" AS fur UNION
 SELECT "barack" , "short" UNION
 SELECT "clinton" , "long" UNION
 SELECT "delano" , "long" UNION
 SELECT "eisenhower" , "short" UNION
 SELECT "fillmore" , "curly" UNION
 SELECT "grover" , "short" UNION
 SELECT "herbert" , "curly";

CREATE TABLE parents AS
 SELECT "abraham" AS parent, "barack" AS child UNION
 SELECT "abraham" , "clinton" UNION
 ...;

For example, if we wanted to select the parents of curly-furred dogs:

SELECT parent FROM parents, dogs
 WHERE child = name AND fur = "curly";

The process, called a cross join, works by combining every possible pairing of data points between the two
tables.

It’s very common that when you join the two tables, you use a WHERE statement to select only the important
info we want.

SQL processes things row-by-row, so you have to join the tables first in order to filter the final table using info
that’s available in both tables.

Joining a Table with Itself
Why would you want to do this? Well, again, since SQL processes things row-by-row, you need to join the
same table to itself if, for example, you want to filter based on info available in two separate rows.

Here’s an example: select all pairs of siblings!

So far, we’ve used tables with unique column names. However, we can use dot expressions and aliases to
disambiguate column values:

SELECT [columns] FROM [table] WHERE [condition] ORDER BY [order];

[table] is a comma-separated list of table names with optional aliases with the AS statement, which
assigns a name to a table:

To select all pairs of siblings:

SELECT a.child as first, b.child as second
 FROM parents AS a, parents AS b
 WHERE a.parent = b.parrent AND a.child < b.child;

The first line builds a new table with two columns, both originally named child , but given the names
first and second . The second line performs the join, as well as gives aliases to the tables so we can

disambiguate which column names comes from which table. And the third column is a standard WHERE

statement that filters the results; a.child<b.child just ensures we’re always returning unique pairs, instead
of for example, returning double pairs A,D and D,A .

(SQL will complain if you try to join two of the same table without giving them aliases. It will return an
ambigious column name error, because it doesn’t know how to refer to the two values)

Joining More Than Two Tables
Multiple tables can be joined to yield all combinations of rows from each. For exmaple, select all grandparents
with the same fur as their grandchildren.

We need three tables, a grandparents table, and two dogs tables, one for the grandparent, one for the
grandchild. First, let’s formalize the grandparents table from before:

CREATE TABLE grandparents AS
 SELECT a.parent AS grandog, b.child AS granpup
 FROM parents AS a, parents as b
 WHERE b.parent = a.child;

And now, let’s join the three tables:

SELECT grandog FROM grandparents, dogs AS c, dogs AS d
 WHERE grandog = c.name AND
 granpup = d.name AND
 c.fur = d.fur;

Here’s another example: write a SQL query that selects all possible combinations of three different dogs with
the same fur and lists each triple in inverse alphabetical order.

SELECT a.name, b.name, c.name
 FROM dogs AS a, dogs AS b, dogs A c
 WHERE a.fur = b.fur AND b.fur = c.fur
 AND a.name > b.name AND b.name > c.name;

Numerical Expressions
Expressions can contain function calls and arithmetic operators, such as:

Combiners: + , - , * , / , % , and , or
Transformers: abs , round , not , -
Comparers: < , <= , > , >= , <> , != , = (<> and != both mean “not equals”)

String Expressions
String values can be combined to form longer strings with the || operator (not + !):

> SELECT "hello," || "world";
hello, world

Basic string manipulation is built into SQL, but differs from Python. People use these in unique ways, using the
substr function, but this is not required knowledge for 61A:

> CREATE TABLE phrase AS SELECT "hello, world" AS s;
> SELECT substr(s, 4, 2) || substr(s, instr(s, " ")+1, 1) FROM phrase;
low

And people have also used SQL to represent data structures like those we’ve seen in Python and Scheme, but
don’t do this!

> CREATE TABLE lists AS SELECT "one" AS car, "two,three,four" AS cdr;
> SELECT substr(cdr, 1, instr(cdr, ",")-1) AS cadr FROM lists;
two

