
CS61A Lecture 37
Monday, December 2, 2019

Announcements
There is no new content in CS61A for the next week. Today, we will go over Prof. DeNero’s research in
natural language.
Wednesday will be a review of the course.
And Friday will be our final lecture.
CSM will be running review sessions at the usual times and lecture halls next week.

Ambiguity

Syntactic Ambiguity in English
Harold Abelson, Gerald Sussman and Julie Sussman, Structure and Interpretation of Computer Programs:

“Programs must be written for people to read”

-noun-		-------verb phrase--------		
-noun-		----verb---		-subordinate-
-noun-		--------verb--------		verb

Above are the three ways you could read the same sentence, thanks to the ambiguous rules of English. Today,
we will build a syntactic parser, which takes in a phrase and outputs a tree of the possible clauses.

Syntax Trees
First, we will try to figure out what that tree, a syntax tree, is.

Representing Syntactic Structure
We will use a Tree class to represent a phrase, but it is not the same Tree class we’ve used all semester. It
will be implemented as such:

A Tree represents a phrase, with:

tag – What kind of phrase (e.g. S, NP, VP)
branches – Sequence of Tree or Leaf components

A Leaf represents a single word;

tag – What kind of word (e.g. N, V)
leaf – The word itself

Here’s an example of this in action:

“cows intimidate cows”

cows = Leaf('N', cows)
intimidate = Leaf('V', `intimidate`)
S, NP, VP = 'S', 'NP', 'VP'

s = Tree(S, [Tree(NP, [cows]),
 Tree(VP, [intimidate,
 Tree(NP, [cows])])])

And we can write a print_tree function like before:

def print_tree(t, indent=0, end='\n'):
 if isinstance(t, Leaf):
 print(t, end='')
 else:
 s = '(' + t.tag + ' '
 indent += len(s)
 print(s, end='')
 print_tree(t.branches[0], indent, '')
 for b in t.branches[1:]:
 print('\n' + ' '*indent, end='')
 print_tree(b, indent, '')
 print(')', end=end)

>>> print_tree(s)
(S (NP (N cows))
 (VP (V intimidate)
 (NP (N cows))))

We can now write very basic rules describing the grammar, just for this sentence.

Here’s how we can start:

lexicon = {

 Leaf('N', 'buffalo'), # beasts
 Leaf('V', 'buffalo'), # intimidate
 }

grammar = {
 'S': [['NP', 'VP']],
 'NP': [['N']],
 'VP': [['V', 'NP']],
 }

In order to expand your tags, we need to write a generator function called expand :

def expand(tag):
 """Yield all trees rooted by tag."""
 for leaf in lexicon:
 if leaf.tag == tag:
 yield leaf
 if tag in grammar:
 for tags in grammar[tag]:
 for branches in expand_all(tags):
 yield Tree(tag,branches)

def expand_all(tags):
 """Yield all sequences of branches for a sequence of tags."""
 if len(tags)==1:
 for branch in expand(tags[0]):
 yield [branch]
 else:
 first, rest = tags[0], tags[1:]
 for first_branch in expand(first):
 for rest_branches in expand_all(rest):
 yield [first_branch]+rest_branches

And now, let’s open this parser program:

>>> for tree in expand('S'):
... print_tree(tree)
(S (NP (N cows))
 (VP (V intimidate)
 (NP (N cows))))

The parser built this sentence, on its own! If we expanded the grammar rules, it could build a list of all possible
sentences, as the grammar rules allow.

Exhaustive Parsing
We want to expand all tags recursively, but we constrain words to match input. Let’s say we want to expand the
sentence “buffalo buffalo buffalo buffalo”

[0] buffalo [1] buffalo [2] buffalo [3] buffalo [4]

In order to do so, we need to keep track of where we are. We split them up between words. We then build a
constraint that a Leaf must match the input, so that we only expand the tags that matter to the current
context.

We can do this by fixing our implementation of expand and expand_all :

def parse(line):
 words = line.split()

 def expand(start,end,tag):
 """Yield all trees rooted by tag."""
 if end-start==1:
 word = words[start]
 for leaf in lexicon:
 if leaf.tag == tag and leaf.word==word:
 yield leaf
 if tag in grammar:
 for tags in grammar[tag]:
 for branches in expand_all(tags,start,end):
 yield Tree(tag,branches)

 def expand_all(start,end,tags):
 """Yield all sequences of branches for a sequence of tags."""
 if len(tags)==1:
 for branch in expand(tags[0]):
 yield [branch]
 else:
 first, rest = tags[0], tags[1:]
 for middle in range(start+1,end+1-len(rest))
 for first_branch in expand(first,middle,first):`
 for rest_branches in expand_all(middle,end,rest):
 yield [first_branch]+rest_branches`

 >>> for tree in expand(0,len(words),'S'):
 ... print_tree(tree)

Learning
The parser learns by feeding in data. The University of Pennsylvania, for example, hired undergrads to write the
rules of sentences written in the Wall Street Journal.

With all these rules written, the parser can now compare sentence trees with those in the rules, and build new
sentences on its own. More importantly, it can also predict which sentence interpretation is the “correct” one
based on its relative frequency in the examples: how often does that structure appear?

