
CS61A Lecture 5
Friday, September 6th, 2019

Announcements
Midterm will be in various locations, at 7 to 9 PM on Monday, September 16th.
Homework 2 due on Thursday, shorter than HW 1.

Environments for Higher-Order Functions
The reason we talk about environment diagrams is to keep track of what happens in higher-order functions.
Environments enable higher-order functions

Functions are first-class objects: they can be assigned, called or returned. Higher-order functions are functions
that either take a function as an argument value or return a function as its return value.

For example, this function takes a function f and applies it twice to x :

def apply_twice(f,x):
 return f(f(x))

When you define a new user-defined function, you create a new frame. In the apply_twice function above,
you will draw the environment diagram first by creating a frame for apply_twice , then when you call f , you
create another frame.

The parent of f will still be global, because the function was defined within the global frame. The parent of a
frame is the frame in which it was defined, not where it is called.

There will be two frames for f , one which takes x as its input values and returns a return value, which is
taken in as the input value x for the second f and returns a new return value.

Names can be bound to functional arguments. Any names sharing the same variable in the global frame, then
the local frame, will be overwritten by the assignment in the local frame.

In other words, look in the global frame only when the name you’re looking for is not in the local frame. Every
time you call a function, you create a new frame with its local variables. The old frame is not overwritten.

Nesting def statements
When you execute a def statement that has a def statement, then you haven’t called the inner def
statement at all. The body only defines a new function, not computes it.

The parent of a def statement within another function definition is the frame in which it was defined.

You can look up variables from the parent frame from within the inner frame, but you cannot modify it without
using the nonlocal statement, which we will not discuss for another couple weeks.

There will always be a new environment for every frame in the diagram, the question is how many
environments are within that environment. For example:

n = 2
def new_function(n):
 def old_function(n):
 return n
 return n

There are three environments above:

1. Global
2. F1-Global
3. F2-F1-Global

Local names are not visible to other non-nested functions.

How to Draw an Environment Diagram
We can keep track with all this with an environment diagram, much like the one you see on Python Tutor. You
can draw your own environment diagrams too! There are separate rules for when functions are defined, and
when they are called.

When a function is defined:

Create a function value.
Its parent is the current frame.
Bind <name> to the function value in the current frame.

When a function is called:

Add a local frame, titled with the <name> of the function being called:
Copy the parent of the frame to the local frame: [parent=<label>]
Bind the <formal parameters> to the arguments in the local frame.
Execute the body of the function in the environment that starts with the local frame.

Lambda Expressions
lambda expressions are not common in Python, but important in other languages.

A lambda expression is a function which has a one-line body, and the value of that line is always the return
value. They cannot contain statements at all in Python.

For example:

multiply_by_y = lambda x: x * y

The name immediately after the lambda is the formal parameter of the function. The function will then look
for the value of y in its environment.

Lambda Expressions versus Def Statements

Both will create a function with the same domain, range and behavior, and both can be bound to a name (with
an assignment statement in lambda 's case.)

However, only the def statement gives the function an intrinsic name, which won’t matter much unless the
function is printed, or in an environment diagram:

>>> def square(x):
... return x*x
>>> square(5)
25
>>> square
<function square ...>
>>> square = lambda x: x * x
>>> square(5)
25
>>> square
<function lambda ...>

