
CS61B Lecture 10
Wednesday, February 12, 2020

Review

Examine the following code:

What gets printed?

Answer: B.f . C.main calls h and passes it aB , whose dynamic type is B . h calls x.g() . Since
g is inherited by B , we execute the code for g in class A . g calls this.f() . Now this contains
the value of h ’s argument, whose dynamic type is B . Therefore, we execute the definition of f
that is in B . In calls to f , in other words, static type is ignored in figuring out what method to
call.

What if we made g static?

Answer: My interpreter says it's an error, but Prof. Hilfinger says no? Selection of f still depends
on dynamic type of this. Same for overriding g in B.

What if we made f static?

Answer: A.f . Since f is a static method in any case, the compiler will make its decision on
which method to use at the time of compilation, not when the method is called.

If we overrode g in B ?

Answer: B.f .

class A {

 void f() {

 System.out.println("A.f");

 }

 void g() {

 f(); /* or this.f() */ }

 }

class B extends A {

 void f() {

 System.out.println("B.f");

 }

}

class C {

 static void main(String[] args) {

 B aB = new B();

 h(aB);

 }

 static void h(A x) {

 x.g();

 }

}

af://n0
af://n3

What if f was not defined in A ?

Answer: An error.

Designing a Class

Let's say we want a class that represents histograms like this one:

We should carefully analyze what we need from this class:

Specify buckets and limits.
Accumulate counts of values.
Retrieve counts of values.
Retrieve numbers of buckets and other initial parameters

Specification Seen by Clients

The clients of a module (its classes and programs, among other things) are the programs or
methods that use that module's exported definitions.

In Java, the intention is that exported definitions are designated public . Clients are intended to
rely on specifications (called APIs), and not code.

The syntactic specifications include method and constructor headers -- the syntax needed to
use. The semantic specifications define what they do. There is formal notation, so use
comments to do this. It is a contract. They usually include:

Conditions the client must satisfy, called preconditions, marked "Pre:" in the examples
below.
Promised results, called postconditions
Design these to be all the client needs.
Exceptions communicate errors, specifically the failure to meet preconditions.

Histogram Specification and Use

af://n16
af://n41
af://n64

Sample output:

An Implementation

/** A histogram of floating-point values */

public interface Histogram {

 /** The number of buckets in THIS. */

 int size();

 /** Lower bound of bucket #K. Pre: 0<=K<size(). */

 double low(int k);

 /** # of values in bucket #K. Pre: 0<=K<size(). */

 int count(int k);

 /** Add VAL to the histogram. */

 void add(double val);

}

void fillHistogram(Histogram H, Scanner in) {

 while (in.hasNextDouble())

 H.add(in.nextDouble());

}

void printHistogram(Histogram H) {

 for (int i = 0; i < H.size(); i += 1) {

 System.out.printf(">=%5.2f | %4d%n",

 H.low(i), H.count(i));

 }

}

>= 0.00 | 10

>= 10.25 | 80

>= 20.50 | 120

>= 30.75 | 50

public class FixedHistogram implements Histogram {

 private double low, high; /* From constructor*/

 private int[] count; /* Value counts */

 /** A new histogram with SIZE buckets of values >= LOW and < HIGH. */

 public FixedHistogram(int size, double low, double high) {

 if (low >= high || size <= 0) {

 throw new IllegalArgumentException();

 this.low = low; this.high = high;

 this.count = new int[size];

 }

 }

 public int size() { return count.length; }

 public double low(int k) {

 return low + k * (high-low)/count.length; }

 public int count(int k) { return count[k]; }

 public void add(double val) {

 if (val >= low && val < high) {

 count[(int) ((val-low)/(high-low) *

 count.length)] += 1;

 }

 }

}

af://n80

Improvements

Here's an idea: don’t require a priori bounds. We will not set the lower bound and higher bound,
but only give it the size.

This is a profoundly different method that requires another implementation. However, clients,
like printHistogram and fillHistogram will still work with no changes, which illustrates the
power of separation of concerns.

How to Implement

It is pointless to pre-allocate the count array, and since we don't know the bounds, we must save
arguments to add . Thus, we are re-computing the count array "lazily" when count(...) is
called. We then invalidate the count array whenever the histogram changes.

Why do this?

By using the public method for count instead of making the array count visible, the "tiny
change" is transparent to clients.

If the client had to write something like myHist.count[k] , it would mean: "the number of items
currently in the k-th bucket of histogram myHist (which, by the way, is stored in an array called
count in myHist that always holds the up-to-date count).”

The parenthetical comment is worse than useless to the client.

If the count array had been visible, after this tiny change, then every use of count in client
program would have to change.

Using a getter method for the count decreases what the client must know and therefore has to
change.

class FlexHistogram implements Histogram {

 private ArrayList<Double> values = new ArrayList<();

 int size;

 private int[] count;

 public FlexHistogram(int size) { this.size = size; this.count = null;

}

public void add(double x) {

 count = null;

 values.add(x);

}

public int count(int k) {

 if (count == null) {

 // compute count from values here.

 }

 return count[k];

}

af://n85
af://n96
af://n102

	CS61B Lecture 10
	Review
	Designing a Class
	Specification Seen by Clients
	Histogram Specification and Use
	An Implementation
	Improvements
	How to Implement
	Why do this?

