
CS61B Lecture 11
Friday, February 14, 2020

Comparable

The Java library provides an interface to describe Object s that have a natural order on them,
such as String and Integer . For now, we will use the old Java 1.4 version:

We might use this in a general-purpose max function for example:

Now max(S) will return the maximum value in S if S is an Object that implements Comparable .

Implementing Comparable

Here's how we can write a class that implements the Comparable interface:

public interface Comparable { // For now, the Java 1.4 version

 /** Returns value <0, == 0, or > 0 depending on whether THIS is

 * <, ==, or > OBJ. Exception if OBJ not of compatible type. */

 int compareTo(Object obj);

}

/** The largest value in array A, or null if A empty. */

public static Comparable max(Comparable[] A) {

 if (A.length == 0) { return null; }

 Comparable result; result = A[0];

 for (int i = 1; i < A.length; i += 1) {

 if (result.compareTo(A[i]) < 0) result = A[i];

 return result;

 }

}

/** A class representing a sequence of ints. */

class IntSequence implements Comparable {

 private int[] myValues;

 private int myCount;

 ...

 public int get(int k) { return myValues[k]; }

 @Override

 public int compareTo(Object obj) {

 IntSequence x = (IntSequence) obj; // Blows up if obj not an IntSequence

 for (int i = 0; i < myCount && i < x.myCount; i += 1) {

 if (myValues[i] < x.myValues[i]) { return -1;

 } else if (myValues[i] > x.myValues[i]) {

 return 1;

 }

 return myCount - x.myCount; // <0 iff myCount < x.myCount

 }

 }

af://n0
af://n4
af://n19

It is also possible to add an interface retroactively: if IntSequence did not implement
Comparable , but did implement compareTo without @Override , we could write:

Java would then "match up" the compareTo in IntSequence with that in Comparable .

Java Generics

The Comparable we just showed earlier was the old Java 1.4 version. The current version uses a
newer feature of Java: generic types.

Here, T is like a formal parameter in a method, except it has a value of a type. We can then use
this value throughout our class, and Java will substitute every instance of this parameter with
whatever we decide to call it on:

In this case, every instance of T is substituted with the type we passed in: IntSequence .

Reader

The Java class java.io.Reader abstracts sources of charcters. Here, we will give you an interface
version (it is, in actuality, an abstract class, but let's say it is an interface for illustration purposes).

}

class ComparableIntSequence extends IntSequence implements Comparable {

 ...

}

public interface Comparable<T> {

 int compareTo(T x);

}

class IntSequence implements Comparable<IntSequence> {

 ...

 @Override

 public int compareTo(IntSequence x) {

 for (int i = 0; i < myCount && i < x.myCount; i += 1) {

 if (myValues[i] < x.myValues[i]) { ... }

 return myCount - x.myCount;

 }

}

public interface Reader { // Real java.io.Reader is abstract class

 /** Release this stream: further reads are illegal */

 void close();

 /** Read as many characters as possible, up to LEN,

 * into BUF[OFF], BUF[OFF+1],..., and return the

 * number read, or -1 if at end-of-stream. */

 int read(char[] buf, int off, int len);

af://n30
af://n50

Generic Partial Implementation

According to the specifications, some of the methods of Reader are related. We can express this
with a partial implementation, which leaves key methods unimplemented and provides default
bodies for others.

However, the result is still abstract: we still cannot use new on it.

Implementing Reader

The class StringReader reads characters from a String:

 /** Short for read(BUF, 0, BUF.length). */

 int read(char[] buf);

 /** Read and return single character, or -1 at end-of-stream. */

 int read();

}

/** A partial implementation of Reader. Concrete

 * implementations MUST override close and read(,,).

 * They MAY override the other read methods for speed. */

public abstract class AbstractReader implements Reader {

 // Next two lines are redundant.

 public abstract void close();

 public abstract int read(char[] buf, int off, int len);

 public int read(char[] buf) {

 return read(buf,0,buf.length);

 }

 public int read() {

 return (read(buf1) == -1) ? -1 : buf1[0];

 }

 private char[] buf1 = new char[1];

}

public class StringReader extends AbstractReader {

 private String str;

 private int k;

 /** A Reader that delivers the characters in STR. */

 public StringReader(String s) {

 str = s; k = 0;

 }

 public void close() {

 str = null;

 }

 public int read(char[] buf, int off, int len) {

 if (k == str.length())

 return -1;

 len = Math.min(len, str.length() - k);

 str.getChars(k, k+len, buf, off);

 k += len;

 return len;

 }

}

af://n56
af://n68

Using Reader

Consider this method, which counts words:

This method works for any Reader :

How It Fits Together

Conclusion

The Reader interface class served as a specification for a whole set of readers.
Ideally, most client methods that deal with Reader s, like wc , will specify type Reader for
the formal parameters, not a specific kind of Reader , thus assuming as little as possible.

/** The total number of words in R, where a "word" is

 * a maximal sequence of non-whitespace characters. */

int wc(Reader r) {

 int c0, count;

 c0 = ’ ’; count = 0;

 while (true) {

 int c = r.read();

 if (c == -1) return count;

 if (Character.isWhitespace((char) c0)

 && !Character.isWhitespace((char) c))

 count += 1;

 c0 = c;

 }

}

wc(new StringReader(someText)) // # words in someText

wc(new InputStreamReader(System.in)) // # words in standard input

wc(new FileReader("foo.txt")) // # words in file foo.txt.

af://n76
af://n92
af://n97

And only when a client creates a new Reader will it get specific about what subtype of
Reader it needs.
That way, client’s methods are as widely applicable as possible.
Finally, AbstractReader is a tool for implementors of non-abstract Reader classes, and not
used by clients.
Alas, Java library is not pure. E.g., AbstractReader is really just called Reader and there is
no interface. In this example, we saw what they should have done!
The Comparable interface allows definition of functions that depend only on a limited
subset of the properties (methods) of their arguments (such as “must have a compareTo
method”).

	CS61B Lecture 11
	Comparable
	Implementing Comparable

	Java Generics
	Reader
	Generic Partial Implementation
	Implementing Reader
	Using Reader
	How It Fits Together

	Conclusion

