
CS61B Lecture 13
Friday, February 21, 2020

Packages

Classes correspond to things being modeled and represented in a program. A package is a
collection of related classes and other packages. For example, Java puts standard libraries and
packages in package java and javax .

By default, a class resides in the anonymous package. To put it elsewhere, use a package
declaration at the start of the file, as in:

Oracle's javac uses convention that class C in package P1.P2 goes in the subdirectory P1/P2
of any other directory in the class path.

Here's an example in Unix:

This searches for a file called TestRunner.class in ./junit/textui , then ~/java-

utils/junit/textui and finally in junit/textui/TestRunner.class in the junit.jar file, a
single file that is a special compressed archive of an entire directory of files.

Access Modifiers

Access modifiers (private , public , protected) do not add anything to the power of Java: they
don't give you the ability to do anything you couldn't before. They allow the programmer to
declare which classes are supposed to need to access which declarations.

Instance variables are usually private , while methods are usually public .

In Java, they are also a part of security, they prevent programmers from accessing things that
would break the runtime system.

Accessibility is always determined by static types:

To determine correctness of writing x.f() , look at the definition of f in the static type of
x .
Why the static type? Because the rules are supposed to be enforced by the compiler, which
only knows the static types of things.

Access Rules

The accessibility of a member depends on:

1. How the member's declaration is qualified, and

package database;

// or

package ucb.util;

$ export CLASSPATH=.:$HOME/java-utils:$MASTERDIR/lib/classes/junit.jar

$ java junit.textui.TestRunner MyTests

af://n0
af://n3
af://n11
af://n21

2. Where it is being accessed

public

Suppose C1 , C2 , C3 and C4 are distinct classes, and class C2a is either the class C2 itself or a
subtype of C2 :

public members are available anywhere.

private

Suppose C1 , C2 and C4 are distinct classes, and class C2a is either the class C2 itself or a
subtype of C2 :

private members are available only within the text of the same class, even for subtypes.

package P1;

public class C1 ... {

 // M is a method, field,...

 public int M ...

 void h(C1 x)

 { ... x.M ... } // OK.

}

package P2;

class C2 extends C3 {

 void f(P1.C1 x) { ... x.M ... } // OK

 void g(C2a y) { ... y.M ... } // OK

}

package P1;

public class C4 ... {

 void p(C1 x)

 { ... x.M ... } // OK.

}

package P1;

public class C1 ... {

 // M is a method, field,...

 private int M ...

 void h(C1 x)

 { ... x.M ... } // OK.

}

package P2;

class C2 extends C1 {

 void f(P1.C1 x) { ... x.M ... } // ERROR

 void g(C2a y) { ... y.M ... } // ERROR

}

package P1;

public class C4 ... {

 void p(C1 x)

 { ... x.M ... } // ERROR.

}

af://n28
af://n32

package private

This is the hidden keyword: if you don't declare any access modifier, a function or variable
automatically becomes package private .

Suppose C1 , C2 and C4 are distinct classes, and class C2a is either the class C2 itself or a
subtype of C2 :

package private members are available only within the same package (even for subtypes)

protected

Suppose C1 , C2 and C4 are distinct classes, and class C2a is either the class C2 itself or a
subtype of C2 :

package P1;

public class C1 ... {

 // M is a method, field,...

 int M ...

 void h(C1 x)

 { ... x.M ... } // OK.

}

package P2;

class C2 extends C1 {

 void f(P1.C1 x) { ... x.M ... } // ERROR

 void g(C2a y) { ... y.M ... } // ERROR

}

package P1;

public class C4 ... {

 void p(C1 x)

 { ... x.M ... } // OK.

}

package P1;

public class C1 ... {

 // M is a method, field,...

 protected int M ...

 void h(C1 x)

 { ... x.M ... } // OK.

}

package P2;

class C2 extends C1 {

 void f(P1.C1 x) { ... x.M ... }

 // ERROR: (x's type is not a subtype of C2)

 void g(C2a y) { ... y.M ... } // OK

 void g2() {... return M ...} // OK (this.M)

}

package P1;

public class C4 ... {

void p(C1 x)

 { ... x.M ... } // OK.

af://n36
af://n41

Protected members of C1 are available within P1 , as for package private . Outside P1 , they
are available within subtypes of C1 such as C2 , but only if accessed from expressions whose
static types are subtypes of C2 .

Why this design?

public declarations represent specifications—what clients of a package are supposed to rely on.

package private declarations are part of the implementation of a class that must be known to
other classes that assist in the implementation.

protected declarations are part of the implementation that subtypes may need, but that clients
of the subtypes generally won’t.

private declarations are part of the implementation of a class that only that class needs.

Review

Observe the following code. For every comment OK? , determine whether the code will error or
not:

Solution

package SomePack;

public class A1 {

 int f1() {

 A1 a = ...

 a.x1 = 3; // OK?

 }

 protected int y1;

 private int x1;

}

// Anonymous package

class A2 {

 void g(SomePack.A1 x) {

 x.f1(); // OK?

 x.y1 = 3; // OK?

 }

}

class B2 extends SomePack.A1 {

 void h(SomePack.A1 x) {

 x.f1(); // OK?

 x.y1 = 3; // OK?

 f1(); // OK?

 y1 = 3; // OK?

 x1 = 3; // OK?

 }

}

package SomePack;

public class A1 {

 int f1() {

 A1 a = ...

 a.x1 = 3; // OK

 }

af://n45
af://n50
af://n53

Access Control is Static Only

public and private don't apply to dynamic types; it's possible to call methods in objects of
types you can't name:

 protected int y1;

 private int x1;

}

// Anonymous package

class A2 {

 void g(SomePack.A1 x) {

 x.f1(); // Error

 x.y1 = 3; // Error

 }

}

class B2 extends SomePack.A1 {

 void h(SomePack.A1 x) {

 x.f1(); // Error

 x.y1 = 3; // Error

 f1(); // Error

 y1 = 3; // OK

 x1 = 3; // Error

 }

}

package utils;

/** A Set of things. */

public interface Collector {

 void

 (Object x);

}

package utils;

public class Utils {

 public static Collector concat() {

 return new Concatenator();

 }

}

/** NON-PUBLIC class that collects strings. */

class Concatenater implements Collector {

 StringBuffer stuff = new StringBuffer();

 int n = 0;

 public void add(Object x) {

 stuff.append(x); n += 1;

 }

 public Object value() {

 return stuff.toString();

 }

}

package mystuff;

class User {

 utils.Collector c = utils.Utils.concat();

 c.add("foo"); // OK

af://n55

Some Loose Ends

Below are a collection of small Java features we haven't covered in class before we move to the
next part of the course, which are important for you to know but didn't quite fit in anywhere else.

Importing

Unlike Python, you don't have to import a package to use its methods in your file. You don't have
to import java.util.List to be able to use List , but importing it means you can use List as
an abbreviation for java.util.List .

You can import all the methods of a package by using a * instead of methodName , so you can, for
example, import java.util.* and use all of its methods without needing to mention the
package every time.

This does not grant any special access to your program: you gain no additional abilities by
importing vs. just using the long form.

You can also import static members of a class: an example is System.out.println or
Math.sqrt , without having to mention the package every time. To do so:

Much like before, this does not give you any benefits other than simplicity, and you cannot do
this for classes in the anonymous package.

Nesting

Sometimes, like as we saw in Signpost, it makes sense to nest one class in another. We do this
when: the class is only to be used in the implementation of the other, or is conceptually only
useful to the outer class.

Nesting classes can help avoid name clashes, as we avoid "polluting the name space" with names
that will not be used elsewhere.

As an example, polynomials can be thought of as sequences of terms, and terms are not useful
outside of polynomials, so we might define a Term class inside of Polynomial .

 ... c.value(); // ERROR

 ((utils.Concatenator) c).value(); // ERROR

}

import static java.lang.System.out;

// Tells Java out is an abbreviation for System.out

import static java lang.System.*;

// Tells Java we can use any static member name in

// System without mentionin the package

class Polynomial {

 // methods on polynomials

 private Term[] terms;

 private static class Term {

 ...

 }

}

af://n58
af://n60
af://n67

The above is an example of a static nested class. They are similar to other classes, except that
they can be private or protected, an they can see private variables of the otuer class.

Non-static nested classes are called inner classes. Somewhat rare is when each instance of the
nested class is created by and naturally associated with an instance of the containing class, line
Bank s and Account s.

instanceOf

It is possible for us to ask about the dynamic type of an object using instanceOf :

However, this is rarely what we want to do. Why do this:

when we can just call x.read() ? In fact, C++ did not use to have this feature, because the
original designer firmly believed you should not be using something if you didn't know what type
it was.

In general, you want to use instance methods rather than instanceOf .

class Bank {

 private void connectTo(...) {...}

 public class Account {

 public void call(int number) {

 Bank.this.connectTo(...);

 } // Bank.this means "the bank that |

 } // created me"

}

Bank e = new Bank(...);

Bank.Account p0 = e.new Account(...);

Bank.Account p1 = e.new Account(...);

void stringChecker(Object a) {

 if (a.instanceOf(String)) {

 System.out.println("yes");

 }

 System.out.println("no");

}

if (x instanceof StringReader) {

 read from (StringReader) x;

} else if (x instanceof FileReader) {

 read from (FileReader) x;

}

af://n75

	CS61B Lecture 13
	Packages
	Access Modifiers
	Access Rules
	public
	private
	package private
	protected

	Why this design?
	Review
	Solution
	Access Control is Static Only

	Some Loose Ends
	Importing
	Nesting
	instanceOf

