
Type Bits Signed? Literals

byte 8 Yes Cast from int : (byte) 3

short 16 Yes None. Cast from int : (short) 4096

char 16 No
a /// (char) 97

\n // newline ((char) 10)

int 32 Yes
123

0100 // Octal for 64
0x3f, 0xffffffff // Hexadecimaal 63, -1

long 64 Yes 123L , 01000L

CS61B Lecture 14
Monday, February 24, 2020

So far, we have dealt with several different types of numbers in Java, and today we will examine
what's different between them.

Negative numbers are negated positive literals. " N bits" means that there are

 integers in the domain of the type:

If signed, range of values is:

If unsigned, only non-negative numbers, and range is

Overflow

How do we handle overflow, such as 1000*1000*1000 ? Some languages throw an exception
(Ada), others give undefined results (C, C++). Java "wraps" the numbers within the number's
bounds: adding one to the maximum turns it into the minimum in the range.

For example, (byte) 128 == (byte) (127+1) == (byte) (-128) . In general:

If the result of some arithmetic subexpression is supposed to have type T , an n -bit integer
type,
then we compute the real (mathematical) value, x ,
and yield a number, x' , that is in the range of T , and that is equivalent to x modulo 2n .
(That means that x − xʹ is a multiple of 2n .)

Modular Arithmetic

This system is called modular arithmetic: when a computation would “overflow” the range of
values for a type, the value yielded is a remainder of division by some modulus.

af://n0
af://n45
af://n57

We define

 to mean that

 for some integer k.

Define the binary operation

 as the value b such that

 and

for

(Can be extended to 0 or less as well, but we won’t bother with that here.) This is not the same as
Java’s % operation!

Various facts: Here, let aʹ denote

One odd thing about this is that there is no built-in system to represent negative numbers. As
such, negative numbers in Java are two tokens mushed into one: the negative token, and the
number itself.

Since the legal integers range from 0 to 2147483647, the legal negative integers range from -1
and go on to 2147483648, this system would not let you write the minimum number so easily.
Thus, Java has the rather strange behavior that:

Character values

char values are non-negative integers because integer values are used to represent characters
according to the Unicode specification set. However, just because you can represent characters
as numbers doesn't mean you should.

x = -2147483648; // is a legal expression

x = 0-2147483648; // is not

af://n83
af://n85

 Expression

OK`` s = b ; i = b ; i = s ; i = c ; l = i ;

Not OK i = l ; b = i ; c = i ; c = i ; s = c ; c = s ; c = b ;

OK by special dispensation
b = 13; // 13 is compile-time constant

b = 12 + 100; // 112 is a compile-time constant

Conversion

In general Java will silently convert from one type to another if this makes sense and no
information is lost from value. Otherwise, you must cast explicitly. Given:

Promotion

Arithmetic operations promote operands as needed, where promotion is just implicit
conversion.

For integer operations:

if any operand is a long , then promote both operands to long
otherwise, promote both to int

Thus, given:

Bitwise Operations

Numbers in Java are represented by a series of bits, booleans that are represented by ones and
zeros. You can actually directly fiddle around with those numbers if you’d like.

Much like how ”and” works in the Java conditional spec, Java will return 1 for a bitwise operation
only if the two numbers on either side of & are both 1, and 0 for every other value.

Similarly, for ”or”, Java will return 0 if the two numbers on either side of | are 0, and 1 for every
other value.

”XOR” (^) stands for exclusive-or, and it means that the operator will return a value of 1 only if
one of the two numbers is 1, and the other is zero. If both numbers are 1 or 0, it returns 0.

And ”NOT” (¬) is simply the negation operation, reversing whatever value it operates on. Observe
the below truth table:

byte = b; char c; short s; int i; long l;

byte = b; char c; short s; int i; long l;

b + 3 = (int) b + 3; // Type int

l + 3 = l + (long) 3; // Type long

'A' + 2 == (int) 'A' + 2; // Type int

b = b + 1; // ILLEGAL

b += 1; // Equivalent to b = (byte) (b+1)

af://n85
af://n101
af://n111

x y x & y x | y x ^ y ¬ x

0 0 0 0 0 1

0 1 0 1 1 1

1 0 0 1 1 0

1 1 1 1 0 0

 y x & y x | y x ^ y

x 0 0 x x

x 1 x 1 x

x x x x 0

There is a slightly modified truth table that may be more useful:

If you have more than one digit, perform bitwise operation on each individual digit to get the final
result.

Left shift and right shift

Numbers in Java aren’t just stored as 0, 1 or 10. They are stored as a sequence of 8 bits (short),
16 bits (int), or even more (long). That means that a number like 1 is stored as 00000001 as a
short .

The left shift (<<) describes an operation where the current value is shifted to the left by adding
zeros to the ”beginning” (beginning means the right, as we are talking about numbers) of the
number. For example, 1 << 4 turns 1 into 10000, which is 16 in decimal form.

The arithmetic right shift (>>) describes an operation where the value is shifted to the right, by
adding ones to the ”end” of the number. 100 >> 2 turns the binary 100 into 111. Because of
how the number of bits is a fixed size, we’re technically not ”adding” digits to the end, so much as
shifting the number to the right, which is why it’s called right shift.

The logical right (>>>) describes an operation where the value is shifted to the right by adding
zeros to the end of the number, instead of ones.

Quick questions

Compute the following numbers:

1. (-1) >>> 29

2. x << n
3. x >> n
4. x >>> 3 & ((1 << 5) - 1)

af://n180

	CS61B Lecture 14
	Overflow
	Modular Arithmetic
	Character values

	Conversion
	Promotion
	Bitwise Operations
	Left shift and right shift

