
CS61B Lecture 16
Friday, February 28, 2020

"An engineer is someone who can do for a dime what any fool could do for a dollar"

Cost is a principal concern throughout engineering, where cost can mean:

operational cost (for programs, time to run, space requirements)
development cost
maintenance cost
costs of failure: how robust? how safe?

Is this program fast enough? This answer will depend on for what purpose, and for what input
data our program is.

How much space will our program take? And most importantly, for this class, how well will your
program scale, as the input increases?

Example

Scan a text corpus (say 108 bytes or so), and find and print the 20 most frequently used words,
together with counts of how often they occur.

Solution 1 (Knuth): Heavy-duty data structures
Knuth devised a little system for writing beautifully documented large programs, and did a
little data structure "hacking" using implementations of a Hash Trie (which we will see later),
with randomized placements, pointers galore. The program is several pages long.

Solution 2 (McIlroy): UNIX shell script
McIlroy used the built-in features of the Unix shell to write a program that fits in five lines:

The question fundamentally becomes: which program is better?

Solution 1 is much faster, and there's no question that it's more elegant.

But solution 2 took 5 minutes to write, and doesn't exactly count for slow: it processes 100 MB in
50 seconds.

It can be argued that in very many cases, solution 2 is better, because it keeps it simple, and from
the engineering perspective of development cost, it is much lower.

Measures of Cost

Time

There are a few different ways we can measure the cost of a program in terms of time.

tr -c -s '[:alpha:]' '[\n*]' < FILENAME | \

sort | \

uniq -c | \

sort -n -r -k 1,1 | \

sed 20q

af://n0
af://n17
af://n29
af://n30

One way is the wall-clock time, or execution time. You can do this yourself:

This is fast, easy to measure, and the meaning is obvious. It's appropriate where time is critical (in
real-time systems, for example), but it also applies only to that specific data set, compiler,
machine and other conditions.

We can also measure the dynamic statement count of the number of times statements are
executed. This is more general -- it's not sensitive to the speed of the machine -- but it doesn't tell
you the actual time, and still only applies to that specific data set.

The symbolic execution time is the formula for execution times as a function for input size. This
applies for all inputs and make scaling clear, but the practical formula must be approximated,
and may actually tell very little about the actual time.

Asymptotic Cost

Symbolic execution time lets us see the shape of the cost function. Since we are approximating
anyway, it is pointless to be precise about these things:

Behavior on small inputs

We can always pre-calculate some results.
Times for small inputs is usually not important.
We are usually much more interested in asymptotic behavior as the input size
becomes very large.

Constant factors

Just changing machines can cause constant-factor change.
An algorithm that is fundamentally fast is not worse just because it is run on a slower
machine.

How can we abstract away these things?

Order Notation

The idea is that we shouldn't try to produce specific functions that specify size, but rather
produce families of functions with similarly behaved magnitudes.

This notation is not specific to computer science, but instead borrowed from mathematics.

For the purposes of this section, we say that f is bounded by g if it is in g 's family.

For any function

the functions

all have the same "shape", so we put them into g 's family.

Any function

such that

time java FindPrimes 1000

af://n37
af://n57

has g 's shape except for small values, is still in g 's family.

To calculate the upper limit, we throw in all functions whose absolute value is everywhere
smaller than or equal to some member of g 's family. We call this set:

In mathematical notation, this is written as:

For lower limits, we throw in all functions whose absolute value is everywhere greater than or
equal to some member of g 's family. We call this set:

In mathematical notation:

And finally, we define

as the set of functions bracketed in magnitude by two members of g 's family.

Illustration

Big O

Here,

We say that f(x) is in g 's bounded above family, written as:

even though, in this case,

af://n82
af://n83

everywhere.

Big Omega

Here,

So f'(x) is in g 's bounded below family, written as:

even though

everywhere.

Big Theta

In the previous two examples, we not only have:

but also:

We can summarize this by saying:

Mathematical pedantry

Technically, this notation

is not 100% correct, since we are describing sets, and we should be writing:

This is however, not worse than the standard notation used outside of CS61B:

af://n92
af://n101

which Professor Hilfinger thinks is a serious abuse of notation.

Why It Matters

Computer scientists often talk as if constant factors didn't matter at all, and the only difference is
between

In reality, it does matter for some values, but it does indeed get "swamped" for larger values:

How big a problem can you solve?

Observe the following table, where the left column shows the time in microseconds to solve a
given problem, as a function of problem size N, and the entries show the maximum size of
problem that can be solved in a second, hour, month of 31 days, and century:

Using Notation

We can use this order notation for any kind of real-valued function, and we will use them to
describe cost functions. Here is a very simple searching algorithm:

af://n117
af://n122
af://n125

We must choose an operation that is representative of how the problem scales with size. In this
case, it is the number of .equals tests.

If L has a length of N , then the loop does at most N tests; we call this the worst-case time.

In fact, the total number of instructions executed is roughly proportional to N in the worst case,
so we can also say the worst-case time is

regardless of the measurement units.

We use the

provision in the definition of Big O to ignore the empty list.

Warnings

It’s also true that the worst-case time is

because Big O bounds are loose.

The worst-case time is

but that does not mean that the loop always takes time N, or even

Instead, we are just saying something about the function that maps N into the largest possible
time required to process any array of length N.

To say as much as possible about our worst-case time, we should try to give a theta bound: in this
case, we can:

But again, that still tells us nothing about best-case time, which happens when we find X at the
beginning of the loop. Best-case time is:

Some Examples

int find(List L, Object X) {

 int c;

 for (c = 0; L != null; L = L.next, c += 1) {

 if (X.equals(L.head)) {

 return c;

 }

 }

 return -1;

}

af://n136
af://n149

Nested Loops

Nested loops often lead to polynomial bounds:

Clearly the worst-case time is

where N is the length of A.

This loop is very inefficient, and we can make it more efficient:

Now the worst case time is proportional to:

So its asymptotic time is unchanged by the constant factor, but the loop is much more efficient.

Recursion and Recurrence

Here's a silly example of recursion. In the worst case, both recursive calls happen:

We define

to be the worst-case cost of occurs(S,X) for S of length N , X of fixed size N_0 , measured in
the number of calls to occurs . Then,

So, we can see that C grows exponentially:

for (int i = 0; i < A.length; i++) {

 for (int j = 0; i < A.length; j++) {

 if (i != j && A[i] == A[j]) {

 return true;

 }

 }

}

return false;

for (int i = 0; i < A.length; i ++) {

 for (int j = i+1; j < A.length; j++) {

 if (A[i] == A[j]) { return true; }

 }

}

return false;

boolean occurs(String S, String X) {

 if (S.equals(X)) { return true; }

 if (S.length() <= X.length()) { return false; }

 return

 occurs(S.substring(1), X) ||

 occurs(S.substring(0, S.length()-1), X);

}

af://n150
af://n161

Binary Search

In the previous case, we saw things that grew very quickly. There are also cases where the growth
is very slow:

Here, the worst case time,

(as measured by the number of calls to compareTo) depends on size

We eliminate S[M] from consideration each time and look at half the rest. Assuming that

for simplicity:

In other words, this algorithm grows logarithmically: the complexity grows more slowly than the
growth of the size of problem.

Merge Sort

Here's another very common case, which you may have seen before:

where merging takes proportional time to the size of its result.

Assuming that the size of L is

boolean isIn(StringX, String[] S, int L, int U) {

 if (L > U) { return false; }

 int M = (L+U)/2;

 int direct = X.compareTo(S[M]);

 if (direct < 0) { return isIn(X,S,L,M-1); }

 else if (direct > 0) { return isIn(X,S,M+1,U); }

 else { return true; }

}

List sort(List L) {

 if (L.length() < 2) { return L; }

 // Split L into L0 and L1 of about equal size

 L0 = sort(L0); L1 = sort(L1);

 return //Merge of L0 and L1

}

af://n170
af://n182

worst-case cost function

counting just merge time:

In general, we can say it's

for some arbitrary N.

	CS61B Lecture 16
	Example
	Measures of Cost
	Time
	Asymptotic Cost
	Order Notation
	Illustration
	Big O
	Big Omega
	Big Theta

	Why It Matters
	How big a problem can you solve?
	Using Notation
	Warnings

	Some Examples
	Nested Loops
	Recursion and Recurrence
	Binary Search
	Merge Sort

