
CS61B Lecture 2
Friday, January 24, 2020

Announcements

Please make sure you have obtained a Unix account.
Lab #1 is due Wednesday (end of Wednesday at midnight). Usually, labs are due Friday
midnight of the week they occur. It is especially important to set up your central repository.
If you decide not to take this course after all, please tell CalCentral ASAP, so that we can
adjust the waiting list accordingly.
HW #0 will be up this evening, due next Friday at midnight. While you get credit for any
submission, we strongly suggest that you give the problems a serious try.
We strongly discourage taking this course P/NP (or S/U).

Let's write a program

To understand Java, let's write a sample program called Primes that takes in a value U , which
prints every prime number through to U . For example:

Useful facts:

prime number is an integer greater than 1 that has no divisors smaller than itself other than
1. (Alternatively: p > 1 is prime if and only if (iff) gcd(p, x) = 1 for all 0 < x < p.)
$k \leq \sqrt{N}$ iff $N/k >= \sqrt N$, for $N, k > 0$
If k divides N, then N/k divides N.

Plan

There are various ways of writing a program. One of them is called top-down, where we look at
the program as a whole, figure out some pieces into which it may be broken (nice, clean pieces
that don't interact with each other too much), and recursively solve each piece.

Our program is going to be in a class called Primes , which has a main method, a printPrimes
method which prints the primes up t a limit and returns void , and an isPrime method that
figures out if a number is prime.

isPrime : Testing for primes

Let's start with the simplest part of the code, which is the isPrime method:

Input: java Primes 101

Output: 2 3 5 7 11 13 17 19 23 29 31 37 41 43

 47 53 59 61 67 71 73 79 83 89 97 101

af://n0
af://n4
af://n16
af://n27
af://n30

This part of the code seems reasonable enough, but well, we now need to write the isDivisible
function (which is an abstraction), as we learnt in 61A.

Thinking recursively

Understand and check isDivisible(13,2) by tracing one level. You don't trace recursive calls
down to the very bottom, just one level is enough. Let's see what we mean:

Call assigns x=13 , k=2
Body has form if (k >= x) S1 else S2 .
Since $2 < 13$, we evaluate the first else .
Check if 13 mod $2 = 0$; it’s not.
Left with isDivisible(13,3) .
Rather than tracing it, instead use the comment:
Since 13 is not divisible by any integer in the range 3,12 (and 3 > 1), isDivisible(13,3)
must be false, and we’re done!
Sounds like that last step begs the question. Why doesn’t it?

The lesson here is that comments aid understanding. Make them count!

Iteration

isDivisible is tail recursive, and so instead of thinking recursively, you can think of it as an
iterative process that creates the body of the recursion.

Usually, an "Algol family" production language have special syntax for iteration. Here are four
equivalent versions of isDivisible :

Algol
Algol was a programming language is the late 50s and early 60s, from which Java is derived
from, regarded by many as the first modern programming language.

private static boolean isPrime(int x) {

 if (x <= 1) {

 return false;

 } else {

 return !isDivisible(x, 2); // "!" means "not"

 }

}

/** True iff X is divisible by any positive number >=K and < X,

 * given K > 1. */

private static boolean isDivisible(int x, int k) {

 if (k >= x) { // a "guard"

 return false;

 } else if (x % k == 0) { // "%" means "remainder"

 return true;

 } else { // if (k < x && x % k != 0)

 return isDivisible(x, k+1);

 }

}

/* Version 1 */

if (k >= x) {

 return false;

af://n35
af://n55

Using Facts About Primes

We haven’t used the Useful Facts from an earlier slide. Since we only have to check for divisors up
to the square root, let's reimplement the iterative version of isDivisible to make it more
efficient:

} else if (x % k == 0) {

 return true;

} else {

 return isDivisible(x, k+1)

}

/* Version 2 */

while (k < x) { // !(k >= x)

 if (x % k == 0) {

 return true;

 }

 k = k+1; // or k += 1, or (yuch) k++

 }

return false;

/* Version 3*/

int k1 = k;

while (k1 < x) {

 if (x % k1 == 0){

 return true;

 }

 k1 += 1 ;

}

return false;

/* Version 4*/

for (int k1 = k ; k1 < x ; k1 += 1) {

 if (x % k1 == 0) {

 return true;

 }

}

return false;

/** True iff X is divisible by some number >=K and < X,

 * given that K > 1, and that X is not divisible by

 * any number > 1 and < K. */

private static boolean isDivisible (int x, int k){

 // !! NOTICE !!

 int limit = (int) Math.round(Math.sqrt(x));

 // !! NOTICE !!

 for (int k1 = k; k1 <= limit; k1 += 1){

 if (x % k1 == 0){

 return true;

 }

 return false;

 }

af://n61

This makes the program run in square root N time instead of linear time, which makes it
considerably faster, especially when checking large numbers of primes.

Cautionary Aside: Floating Point
See the notice on the previous piece of code. Why is that there? Well, floating point
operations yield to the corresponding mathematical operations, you might ask the
following about (int) Math.round(Math.sqrt(x)) :

Is it always at least $⌊\sqrt{x}⌋$? ($⌊z⌋$ means “the largest integer $≤ z$.”) If not, we
might miss testing $\sqrt{x} when {x} is a perfect square.

As it happens, the answer is “yes” for IEEE floating-point square roots. This is just an
example of the sort of detail that must be checked in edge cases.

printPrimes : Simplified solution

Here is a very quick overview of printPrimes :

There is just one problem with this: it doesn't neatly create line breaks. What if we asked it to
print up to 8589935681?

Let's create a neat solution that automatically wraps every 10 numbers (it's not perfect, but oh
well):

And there's our program! We have just written our first Java program with the top-down method.

/** Print all primes up to and including LIMIT. */

private static void printPrimes(int limit){

 for (int p = 2; p <= limit; p += 1){

 if (isPrime(p)){

 System.out.print(p + " ");

 }

 }

System.out.println();

}

private static void printPrimes(int limit){

 int np;

 np = 0;

 for (int p = 2; p <= limit; p += 1){

 if (isPrime(p)){

 System.out.print(p + " ");

 np += 1;

 if (np % 10 == 0){

 System.out.println();

 }

 }

 }

 if (np % 10 != 0){

 System.out.println();

 }

af://n71

	CS61B Lecture 2
	Announcements
	Let's write a program
	Plan

	isPrime: Testing for primes
	Thinking recursively
	Iteration
	Using Facts About Primes

	printPrimes: Simplified solution

