
CS61B Lecture 20  
Tuesday, March 10, 2020

Announcements  

Sections are being cancelled after today.
Professor Hilfinger's Office Hours (OH) will continue as scheduled
Project and homework deadlines are being extended.

Trees  

Trees naturally represent a recursively defined, hierarchial objects with more than one recursive 
subpart for each instance.

Common examples will include expressions and sentences. Expressions have definitions such as 
"an expression consists of a literal or two expressions separated by an operator."

Also describe structures in which we recursively divide a set of multiple subsets.

Formal Definitions  

Trees come in a variety of flavors defined recursively. Here are a few definitions:

As defined by CS61A: A tree consists of a label value and zero or more branches (or 
children), each of them a tree.
As defined by CS61A, alternative definition: A tree is a set of nodes (or vertices), each of 
which has a label value and one or more child nodes, such that no node descends (directly 
or indirectly) from itself. A node is the parent of its children.

We can also think of each node as having a fixed purpose. The most notable one we have seen so 
far is the binary tree. We will see other varieties when considering graphs.

Positional trees: A tree is either empty or consists of a node containing a label value and an 
indexed sequence of zero or more children, each a positional tree. If every node has two 
positions, we have a binary tree and the children are its left and right subtrees. Again, nodes 
are the parents of their non-empty children.

Characteristics of a Tree  

The root of a tree is a non-empty node with no parent in that tree (its parent might be in some 
larger tree that contains that tree as a subtree). Thus, every node is the root of a (sub)tree.

The order, arity, or degree of a node (tree) is its number (maximum number) of children. The 
nodes of a k-ary tree each have at most k children. A leaf node has no children (no non-empty 
children in the case of positional trees).

The height of a node in a tree is the largest distance to a leaf. That is, a leaf has height 0 and a 
non-empty tree’s height is one mor e than the maximum height of its children. The height of a 
tree is the height of its root.
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The depth of a node in a tree is the distance to the root of that tree. That is, in a tree whose root 
is R, R itself has depth 0 in R, and if node S 6= R is in the tree with root R, then its depth is one 
greater than its parent’s.

These definitions will be useful when discussing the efficiency of this data structure.

The 61ATree  

Here is the Tree  class as we studied it in CS61A.

Interesting in Java, while it has implementations for ArrayList  and LinkedList , it does not 
have a formal definition for trees. Everything that uses Trees, include TreeSet  and TreeMap , 
there's no "tree"-ness in it except in its implementation; there are no usual tree operations 
available to you, the programmer.

Tree Traversal  

Traversing a tree means enumerating (some subset of) its nodes. Typically done recursively, 
because that is natural description. As nodes are enumerated, we say they are visited. Three 
basic orders for enumeration (+ variations): 

Preorder: visit node, traverse its children.
Postorder: traverse children, visit node. 
Inorder: traverse first child, visit node, traverse second child (binary trees only).

Preorder Traversal and Prefix Operations  

public class Tree<Label> {

    // This constructor is convenient, but unfortunately requires this

    // SuppressWarnings annotation to prevent (harmless) warnings

    // that we will explain later.

    @SuppressWarnings("unchecked")

    public Tree(Label label, Tree<Label>... children) {

        label = label;

        kids = new ArrayList<>(Arrays.asList(children));

    }

    public int arity() { return kids.size(); }

    public Label label() { return label; }

    public Tree<Label> child(int k) { return kids.get(k); }

    private Label label;

    private ArrayList<Tree<Label>> kids;

}
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Inorder Traversal and Infix Operations  

Postorder Traversal and Postfix Operations  

static String toLisp(Tree<String> T) {

    if (T.arity() == 0) return T.label();

    else {

        String R; R = "(" + T.label();

        for (int i = 0; i < T.arity(); i += 1) {

            R += " " + toLisp(T.child(i));

            return R + ")";

        }

    }

static String toInfix(Tree<String> T) {

    if (T.arity() == 0) {

        return T.label();

    } else if (T.arity() == 1) {

        return "(" T.label() + toInfix(T.child(0)) + ")";

    } else {

        return "(" toInfix(T.child(0)) + T.label() + toInfix(T.child(1)) + ")";

    }

}
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The Visitor Pattern  

java.util.function.Consumer  is a library interface that works as a function-like type with one 
void  method, accept , which takes an argument of type AType .

Using Java 8 lambda syntax, I can print all labels in the tree in preorder with: 
preorderTraverse(myTree, T -> System.out.print(T.label() + " "));

Iterative Depth-First Traversal  

Tree recursion conceals data: a stack of nodes (all the T arguments) and a little extra information. 
We can make the data explicit:

This traversal takes the same Big Theta time as doing it recursively, and also the same Big Theta 
space. That is, we have substituted an explicit stack data structure ( work ) for Java’s built-in 
execution stack (which handles function calls).

Level-Order Traversal  

static String toPolish(Tree<String> T) {

    String R; R = "";

    for (int i = 0; i < T.arity(); i += 1) {

        R += toPolish(T.child(i)) + " ";

        return R + String.format("%s:%d", T.label(), T.arity());

    }

}

void preorderTraverse(Tree<Label> T, Consumer<Tree<Label>> visit) {

    if (T != null) {

        visit.accept(T);

        for (int i = 0; i < T.arity(); i += 1) {

            preorderTraverse(T.child(i), visit);

        }

    }

}

void preorderTraverse2(Tree<Label> T, Consumer<Tree<Label>> visit) {

    Stack<Tree<Label>> work = new Stack<>();

    work.push(T);

    while (!work.isEmpty()) {

        Tree<Label> node = work.pop();

        visit.accept(node);

        for (int i = node.arity()-1; i >= 0; i -= 1) {

            work.push(node.child(i)); // Why backward?

        }

    }

}
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A simple modification to iterative depth-first traversal gives breadthfirst traversal. Just change the 
(LIFO) stack to a (FIFO) queue:

Times  

The traversal algorithms have roughly the form of the boom example in §1.3.3 of Data Structures
—an exponential algorithm. However, the role of M in that algorithm is played by the height of 
the tree, not the number of nodes. In fact, easy to see that tree traversal is linear to N, where N is 
the # of nodes: Form of the algorithm implies that there is one visit at the root, and then one visit 
for every edge in the tree. Since every node but the root has exactly one parent, and the root has 
none, must be N − 1 edges in any non-empty tree. 

In a positional tree, is also one recursive call for each empty tree, but # of empty trees can be no 
greater than kN, where k is arity. For k-ary tree (where the max # children is k):

 where h is height.

So,

Many tree algorithms look at one child only. For them, worst-case time is proportional to the 
height of the tree, linear to lg N, assuming that tree is bushy—each level has about as many 
nodes as possible.

Recursive Breadth-First Traversal  

void breadthFirstTraverse(Tree<Label> T, Consumer<Tree<Label>> visit) {

    ArrayDeque<Tree<Label>> work = new ArrayDeque<>(); // (Changed)

    work.push(T);

    while (!work.isEmpty()) {

        Tree<Label> node = work.remove(); // (Changed)

        if (node != null) {

            visit.accept(node);

            for (int i = 0; i < node.arity(); i += 1) { // (Changed) 

                work.push(node.child(i));

            }

        }

    }

}
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Previous breadth-first traversal used space proportional to the width of the tree, which is Theta N 
for bushy trees, whereas depth-first traversal takes logarithmic space on bushy trees.

Can we get the best of both worlds, so that we get breadth-first traversal in logarithmic space and 
linear time on bushy trees? We can do this by, for each level, k, of the tree from 0 to lev , call 
doLevel(T, k) :

In this method, we do breadth-first traversal by repeated (truncated) depthfirst traversals: 
iterative deepening

In doLevel(T, k) , we skip (i.e., traverse but don’t visit) the nodes before level k, and then visit at 
level k, but not their children.

Iterative Deepening Time?  

In general, the number of leaves at a level in a tree is approximately equal to the number of 
nodes in all the levels before it.

This results in the interesting fact that if you pursue a depth-first traversal, level-by-level, you get 
the same order as a breadth-first traversal, and even though you seem to do a fair bit more work, 
it is only a constant factor more.

Iterators for Trees  

Frankly, iterators are not terribly convenient on trees. But we can use our ideas from iterative 
methods to do so:

We could also modify this method to take in <Tree<Label>>  and return the nodes instead of just 
labels.e

Tree Representation  

void doLevel(Tree T, int lev) {

    if (lev == 0) {

        // visit T

    } else  {

        for each non-null child, C, of T {

            doLevel(C, lev-1);

        }

    }

}

class PreorderTreeIterator<Label> implements Iterator<Label> {

    private Stack<Tree<Label>> s = new Stack<Tree<Label>>();

    public PreorderTreeIterator(Tree<Label> T) { s.push(T); }

    public boolean hasNext() { return !s.isEmpty(); }

    public T next() {

        Tree<Label> result = s.pop();

        for (int i = result.arity()-1; i >= 0; i -= 1) {

            s.push(result.child(i));

        }

        return result.label();

    }

}

af://n148
af://n157
af://n176



	CS61B Lecture 20
	Announcements
	Trees
	Formal Definitions
	Characteristics of a Tree
	The 61ATree

	Tree Traversal
	Preorder Traversal and Prefix Operations
	Inorder Traversal and Infix Operations
	Postorder Traversal and Postfix Operations
	The Visitor Pattern
	Iterative Depth-First Traversal
	Level-Order Traversal

	Times
	Recursive Breadth-First Traversal
	Iterative Deepening Time?

	Iterators for Trees
	Tree Representation



