
CS61B Lecture 21  
Wednesday, March 11, 2020

Announcements  

CS61B is now fully online due to the suspension of classes.
Several deadlines have been pushed back.
The midterm will be online.

Divide and Conquer  

Trees represent hierarchies of data and they can mean one of many different things. For the 
purposes of searching, a very useful thing is to have the hierarchy be something that models 
what we call "divide and conquer".

It is a way of recursively breaking the problem down into small pieces and attacking the pieces 
separately, which if done correctly, can vastly speed up our algorithms. 

We'll say that a node either contains data or some information that tells us which child might 
contain the output.

We are going to store some enough information to decide which child might have the data we are 
looking for. We saw the figure for logarithmic algorithms: at one microsecond per comparison, 
we could process 10 to the power of 300000 items per second. The tree is a natural framework 
for this representation.

Binary Search Trees  

We have seen in some small capacity before, the Binary Search Tree (BST). Tree nodes contain 
keys and possibly other data. The binary search property states that all nodes in the left subtree 
of the node have smaller keys, and all nodes in the right subtree have larger keys.

"Smaller" means any complete transitive, anti-symmetric ordering on keys. We are going to play 
fast and loose with the definition of smaller, which can satisfy one of these conditions:

Exactly one of x < y  or y < x  is true
x < y  and y < z  imply x < z

af://n0
af://n3
af://n11
af://n22


Duplicate keys can mean one of several different things, but for the sake of simplicity, we will 
not deal with duplicate keys this semester.

For example, in a dictionary database, the node label wouild be (word, definition) , where 
word  is the key.

For concreteness, we will use the standard Java convention of calling compareTo , or the < , >  
operators.

Finding  

Here's an example of what searching for the labels 50 and 49 would look like in a BST:

Dashed boxes show which node labels we look at, and the nodes looked at is directly 
proportional to the height of the tree.

Inserting  

And here's how we would insert into a BST:

static BST find(BST T, Key L) {

    if (T == null) { return T; }

    if (L.compareTo(T.label()) == 0 ) {

        return T;

    } else if (L.compareTo(T.label()) < 0) {

        return find(T.left(), L);

    } else {

        return find(T.right(), L);

    }

}

af://n47
af://n57


Starred edges are set (to themselves, unless initially null). And the time complexity remains 
proportional to the height of the tree.

Deletion  

Deletion can be rather a pain in the neck, as we will see with many of these data structures 
throughout the course. There are three possible cases:

Removal of childless node  

In this case, it would be fairly easy, as we would simply reassign the parent node's pointers to no 
longer point at the deleted node. Our deletion algorithm would try to see what, in the example 
above, the children of 30 would look like without the node 27, and return that. Because 27 is a 
leaf, then it would just return null, and 30's children will now be null.

Removal of node with one child  

In this case, it would also be a fairly simple procedure of moving the children "up one level", as 
the one child inherits from the parent and replaces the parent with itself. Our deletion algorithm 
would find that the children of 19 without the node 25 is just the tree with the single node 30, 
and its right child is now that tree.

Removal of node with two children  

/** Insert L in T, replacing existing

* value if present, and returning

* new tree. */

static BST insert(BST T, Key L) {

    if (T == null) { return new BST(L); }

    if (L.compareTo(T.label()) == 0) {

        T.setLabel(L);

    } else if (L.compareTo(T.label()) < 0) {

        T.setLeft(insert(T.left(), L));

    } else {

        T.setRight(insert(T.right(), L));

    } 

    return T;

}

af://n67
af://n71
af://n75
af://n82


We've now taken care of the above two cases. This last case is a little complicated. We must look 
down into the children and find a node that replaces 42 without disturbing the tree's binary 
search property. Obviously, the danger is that we will disturb this property and end up with, for 
example, nodes on the right that are less than the node we choose to replace 42 with. 

How do we avoid that? Well, we find the smallest node, and move that up to the top after 
removing it from the subtree! The binary search property assures us that this smallest node from 
the right subtree will still be bigger than any node in the left subtree.

Finding minimum and maximum nodes

/** Remove L from T, returning new tree. */

static BST remove(BST T, Key L) {

    if (T == null) { return null; }

    if (L.compareTo(T.label()) == 0) {

        if (T.left() == null) { return T.right(); }

        else if (T.right() == null) { return T.left(); }

        else {

            Key smallest = minVal(T.right()); // ??

            T.setRight(remove(T.right(), smallest));

            T.setLabel(smallest);

        }

    } else if (L.compareTo(T.label()) < 0) {

        T.setLeft(remove(T.left(), L));

    } else {

        T.setRight(remove(T.right(), L));

    } 

    return T;

}



To find the minimum node in any tree, keep going down the left branch until it is null. 
Conversely, finding the maximum node in any tree involves going down the right side 
continuously until we get to null. This is how the minVal  method in the code above works, 
which still has a slight TypeError . Try to find the error and fix it in the code above!

These are the basic operations, which are the basic operations defined in the Java library: 
contains , add  and remove , which we have defined here.

The performance problem with BSTs

If we were to delete enough (and the right) nodes from our BST, we will find that we will 
have converted our BST into a linked list, which means that in the worst cases, the time of 
insertion and deletion will be proportional to the size of the linked list. It is a performance 
problem we will come back to solve later.

Quadtrees  

Let's say we want to index information about 2D locations so that items can be retrieved by 
position. What we find is that binary search trees don't have to be binary. Quadtrees use the 
standard data-structuring trick of divide and conquer.

The idea is to divide 2D space into four quadrants, and store items in the appropriate quadrant. 
Repeat this recursively with each quadrant that contains more than one item.

Original definition -- a quadtree is either:

empty,
an item at some point, (x, y) , called the root, plus
four quadtrees, each containing only items that are northwestn, northeast, southwest and 
southeast of (x, y)

The big idea is that if you are looking for some point (x', y') , and the root is not the point you 
are looking for, you can narrow down which of the four subtrees of the root to look in by 
comparing the coordinates of the root with the coordinates of the point you are looking for.

There is more information than we need to know regarding quadtrees in this version of the 
course, because this data structure was previously a required part of a project. This project is not 
being done this year, but perhaps you will still find it useful.

Example  

We start at some root node, which is point A in this case. If we want to find the point D. The point 
D is clearly northeast of A, so we go to the northeast child, which is B. From B, the point D is to its 
southwest, so we go to the southwest child C. And from here, the point D is to the southeast, so 
we go to its southeast child and find D.

In each case, we know the coordinates of the point we are on, and we know the coordinates of 
the point we are looking for.

A slight variation of the quadtree has us represent it as a binary search tree. The way we do that 
is that we have every odd level be divided by east-west, and every even level be north-south, 
which gives us the same effect.

Point-region (PR) Quadtrees  

af://n101
af://n134
af://n142


If we use a Quadtree to track moving objects, it may be useful to delete items from a tree: when 
an object moves, the subtree that it goes in may change. It is diffcult to do this with our regular 
quadtree above, so we'll define a bounding rectangle B as part of the definition of a quadtree, 
and either:

Zero or up to a small number of items that lie in that rectangle, or
Four quadtrees whose bounding rectangles are the four quadrants of B (all of equal size).

A completely empty quadtree can have an arbitrary bounding rectangle, or you can wait for the 
first point to be inserted. 

Example  

Navigating PR Quadtrees  

To find an item at (x, y)  in quadtree T:

1. If (x, y)  is outside the bounding rectangle of T, or T is empty, then (x, y)  is not in T.
2. Otherwise, if T contains a small set of items, then (x, y)  is in T if and only if it is among 

these items.
3. Otherwise, T contains of four quadtrees. Recursively look for (x, y)  in each (jowever, step 

1 above will cause all but one of these bounding boxes to reject the point immediately).

Similar procedure when looking for all items within some rectangle R:

1. If R does not intersect the bounding rectangle of T, or T is empty, then there are no items in 
R. 

2. Otherwise, if T contains a set of items, return those that are in R, if any. 
3. Otherwise, T consists of four quadtrees. Recursively look for points in R in each one of them.

Inserting into PR Quadtrees  

There are various cases for inserting a new point N, assuming maximum occupancy of a region is 
2, showing initial state =⇒ final state

af://n156
af://n162
af://n193



	CS61B Lecture 21
	Announcements
	Divide and Conquer
	Binary Search Trees
	Finding
	Inserting
	Deletion
	Removal of childless node
	Removal of node with one child
	Removal of node with two children


	Quadtrees
	Example

	Point-region (PR) Quadtrees
	Example
	Navigating PR Quadtrees
	Inserting into PR Quadtrees



