
CS61B Lecture 23  
Monday, March 16, 2020

Announcements  

We will move to Zoom lectures on Wednesday, which will have a maximum of 300 live 
participants. They will still be recorded for later playback.
There will be adjustments to deadlines and tests over the next couple of weeks. Please stay 
tuned.

Searching  

The theme so far has been collections of data and how to search through them. We have seen 
trees and the use of trees for searching. We have done game trees and their use in searching for 
a good move. Now we will see some specialized search structure.

Priority Queues and Heaps  

You may be a little confused about the distinction between these two concepts. In this class, we 
will define the priority queue as the abstract algorithmic idea, and the heap is an implementation 
of the idea.

A priority queue is simply a collection of items which has the operations "add", "find largest", and 
"remove largest". We can stick things in in any order, but we can pull the largest item at any time.

How can this be useful? Well, we could schedule a long stream of actions that have to occur at 
certain times, where the earliest time is defined as the largest. At any given time, we can execute 
the next action by finding the largest, performing it and then removing it from the queue. 

We could also use it to sort by repeatedly removing the largest item from the queue.

For this concept, the standard implementation is the heap, which is a kind of tree. There are 
multiple data structures that can give the same effect of a priority queue, including some 
examples you will see later in this structure. The heap is however, particularly good at this set of 
operations.

Confusingly, the heap is also used to describe the pool of storage that your new  requests go to. 
Don't mix them up!

Heap  

A max-heap is a binary tree that enforces the heap property, where the labels of both children 
are less than the node's label, such that the node at the top has the largest label.

The definition is looser than the binary search property, which allows us to keep the tree "bushy". 
It is always valid to put the smallest nodes anywhere at the bottom of the tree. Because of this, 
heaps can be made nearly complete, where all but possibly the last row have as many keys as 
possible. As a result, the worst case insertion and deletion time always takes logarithmic time.

A min-heap is basically the same thing, but with the minimum value at the root and children 
have larger values than their parents.

af://n0
af://n3
af://n9
af://n11
af://n18


Adding to heaps  

For the data 1 17 4 5 9 0 -1 20  , we can heapify it into this form: (To start, we can either start 
with an empty heap and continually use add , or another technique we will see later)

To add 8, we will first add it to the bottom, where the heap property is violated, so we will re-
heapify the tree:

And adding 18 has a similar effect:

Removing from heaps  

af://n22
af://n29


To remove the largest node, we move the bottommost, rightmost node to the top, then re-
heapify down as needed (swap offending node with larger child) to re-establish heap property.

The reason we do this is to preserve as much of the original shape of the heap as possible.

Heaps as Arrays  

Since heaps are nearly complete, we can use arrays for compact representation, where the nodes 
are stored in level order. The children of the node at index k  are in 2k  and 2k + 1  if numbering 
from 1, or 2k + 1  and 2k + 2  if numbering from 0.

We can see the removal process in array from as such:

af://n33
af://n37


Ranges  

So far, we have always looked for specific items in collections. Consider instead the scenario 
where we want all values in a particular range, such as all labels in a tree T that are between two 
values L and U. Here is some code that does that:

Time for Range Queries  

The time for the range query is in 

where h is the height of the tree and M is the number of data items that turn out to be in the 
range.

Consider the situation of searching the tree below for all values between 25 inclusive and 40 
exclusive.

The dashed nodes are never looked at. The starred nodes are looked at but not output, and the h 
comes from the starred nodes, while M comes from un-starred non-dashed nodes. This means 
the function is faster when our range is narrower.

Ordered Sets and Range Queries  

A good engineer, instead of implementing this data structure him or herself, will use an already-
completed implementation. Don't repeat work that's already been done!

/** Apply WHATTODO to all labels in T that are >= L and < U,

 *  in ascending natural order. */

static void visitRange(BST<String> T, String L, String U, Consumer<BST<String>> 

whatToDo) {

    if (T != null) {

        int compLeft = L.compareTo(T.label()),

            compRight = U.compareTo(T.label());

        if (compLeft < 0) { /* L < label */

            visitRange(T.left(), L, U, whatToDo);

        }

        if (compLeft <= 0 && compRight > 0) { /* L <= label < U */

            whatToDo.accept(T);

        }

        if (compRight > 0) {/* label < U */

            visitRange(T.right(), L, U, whatToDo);

        }

    }

}

af://n37
af://n40
af://n47


In Java, this is represented by the SortedSet  that supports range queries with views of a set:

S.headSet(U) : subset of S  that is less than U .
S.tailSet(L) : subset of S that is greater than or equal to L .
S.subSet(L, U) : subset that is greater than or equal to L  and less than U .

Any changes to views will modify the original S . Attempts to, for example, add to a headSet  
beyond U are disallowed.

You can iterate through a view to process a range. For example:

TreeSet  

The Java library type TreeSet<T>  is the concrete implementation of SortedSet  in Java. It 
requires that T  either be Comparable , or that you provide a Comparator , like this:

Comparator  is a type of function object:

(We will deal with what Comparator<T extends Comparable<T>>  at some later point.)

For example, the reverseOrder  comparator is implemented as such:

BSTSet  representation  

How do we implement this view thing? Below is a rather complicated example you can sit on and 
consider.

Each object has 3 fields, a pointer to a tree, and its lower and upper limits. When we create 
subsets, we use exactly the same tree, but put in the limits, such that the object will only show 
things within the limits.

(One small note is that .size()  is very expensive!)

SortedSet<String> fauna = new TreeSet<String (Arrays.asList ("axolotl", "elk", 

"dog", "hartebeest", "duck"));

for (String item : fauna.subSet ("bison", "gnu")) {

    System.out.printf ("%s, ", item);

}

SortedSet<String> rev.fauna = new TreeSet<String>(Collections.reverseOrder());

interface Comparator<T> {

    /** Return <0 is LEFT<RIGHT, >0 if LEFT>RIGHT, else 0 */

    int compare(T left, T right);

}

static <T extends Comparable<T>> Comparator<T> reverseOrder() {

    // Java figures out this lambda expression is a Comparable<T> 

    return (x, y) -> y.compareTo(x);

}

af://n60
af://n68


SortedSet<String>

    fauna = new BSTSet<String>(stuff);

    subset1 = fauna.subSet("bison","gnu");

    subset2 = subset1.subSet("axolotl","dog");


	CS61B Lecture 23
	Announcements
	Searching
	Priority Queues and Heaps
	Heap
	Adding to heaps
	Removing from heaps
	Heaps as Arrays


	Ranges
	Time for Range Queries
	Ordered Sets and Range Queries
	TreeSet
	BSTSet representation



