
CS61B Lecture 25
Friday, March 20, 2020

Java Generics

We have been using generics for quite some time now, but it's probably a good idea to examine
how they actually work.

The Old Days

Java library types like List s didn't used to be parameterized -- All List s were lists of Object s,
and you'd have to cast items back to their original type. You would do something like:

That is, you must explicitly cast result of get to let the compiler know its type. Also, when calling
L.add , there was no check that you put only objects of a certain type into the list.

The Java designers decided this was a problem, and in version 1.5, introduced parameterized
types to the language as we do today, like List<String> , like C++.

Unfortunately, it is not as simple as one might think, as it introduces a whole set of complexities
and semantics into the language. They also had to work with the additional restriction of doing
this without breaking compatibility with existing Java programs.

Basic Parameterization

What's the idea? It's not particularly difficult. From the definitions of ArrayList and Map in
java.util , we see that these act sort of like functions, but instead of taking in a pointer or
primitive as a value, they take in a type.:

The first occurrences of Item , Key and Value introduce formal type parameters, whose
"values" (reference types) get substituted for all the other occurrences of Item , Key or Value
whenever ArrayList or Map is "called".

Other occurrences of Item , Key and Value are uses of the formal types, just like uses of a
formal parameter in the body of a function.

for (int i = 0; i < L.size(); i++) {

 String s= (String) L.get(i);

}

public class ArrayList<Item> implements List<Item> {

 public Item get(int i) { ... }

 public boolean add(Item x) { ... }

 ...

}

public interface Map<Key, Value> {

 Value get(Key x);

 ...

}

af://n0
af://n3
af://n5
af://n11

Type Instantiation

Instantiating a generic type is analogous to calling a function. Consider again:

When we "call" it with ArrayList<String> , we are, in effect, creating a new type:

And likewise, List<String> "creates" a new interface type as well. We say "in effect" because
Java does not actually create a new type, but it's the basic idea of it.

Parameters on Methods

Not only can classes be parameterized by type, but also functions. Here is an example of this
from java.util.Collections :

The compiler figures out T in the expression singleton(x) by looking at the type of x . This is a
simple example of type inference.

In the call List<String> empty = Collections.emptyList() , the parameters obviously don't
suffice, but the compiler deduces the parameter T from context and assigns it to String .

Java has gotten progressively smarter and smarter: in the newest versions, it is possible to have
local variables where you do not need to specify the type. It is not covered in this course, but it is
covered under the "var" keyword.

Wildcards

Consider the definition of something that counts the number of items something occurs in a
collection of items. We could write this as:

public class ArrayList<Item> implements List<Item> {

 public Item get(int i) { ... }

 public boolean add(Item x) { ... }

 ...

}

public class StringArrayList implements List<String> {

 public String get(int i) { ... }

 public boolean add(String x) { ... }

 ...

}

/** A read-only list containing just ITEM. */

static <T> List<T> singleton(T Item) { ... }

/** An unmodifiable empty list. */

static <T> List<T> emptyList() { ... }

af://n16
af://n22
af://n28

In this particular case, we don't care what T is, because we don't need to declare anything of type
T in the body. Thus, we could instead write:

Wildcard type parameters say that you don't care what type a parameter is -- any subtype of
Object will do:

Subtyping

This generics business raises an entirely new set of questions regarding the relationship between
subtypes. We know that ArrayList is a subtype of List , and String is a subtype of Object . Is
List<String> then a subtype of List<Object> ?

It turns out that's not quite true... Consider this fragment if this were true:

Having List<String> as a subtype of List<Object> would violate type safety: the compiler is
wrong about the type of a value. So in general, for T1<x> to be the subtype of T2<y> , x must be
identical to y . But what about T1 and T2 ?

Now consider:

In this case, everything is fine:

The object's dynamic type is ArrayList<String> .
Therefore, the methods expected for LS must be a subset of those for ALS .
Since the type parameters are the same, the signatures of those methods will be the same.
Therefore, all legal calls on methods of LS (according to the compiler) will be valid for the
actual object pointed to by LS .

sttic <T> int frequency(Collection<T> c, Object x) {

 int n = 0;

 for (T y : c) {

 if (x.equals(y)) {

 n++;

 }

 }

 return 1;

}

 ...

 for (Object y : c) {

 ...

static int frequency(Collection<?> c, Object x) { ... }

List<String> LS = new ArrayList<String>();

List<Object> LO = LS; // OK?

int[] A = { 1, 2 };

LO.add(A); // Legal, since A is an Object

String S = LS.get(0); // OOPS! A.get(0) is NOT a String, even though

 // the spec of List<String>.get says it is.

ArrayList<String> ALS = new ArrayList<String>();

List<String> LS = ALS;

af://n35

In general, T1<X> is a subtype of T2<X> if T1 is a subtype of T2 .

Java Inconsistencies

You would think that in an ordered programming language, this rule would be carried
consistently throughout. In Java, this is not the case.

For the same reason that ArrayList<String> should not be a subtype of ArrayList<Object> ,
you should also expect that String[] is not a subtype of Object[] . And yet it is! One can get
into trouble with:

So in Java, the last line causes an ArrayStoreException a (dynamic) runtime error instead of a
(static) compile-time error. Why is this the case? Because basically, there would otherwise be no
way to implement ArrayList , and other classes.

Type Bounds

Sometimes, your program needs to ensure that a particular type parameter is replaced only by a
subtype (or super-type) of a particular type (sort of like specifying "the type of a type"). For
example,

This requires that all type parameters to NumericType must be subtypes of Number (the type
bound). I can either extend to implement the type bound as appropriate.

Here is another example from the Collections library:

This code means that L can be a List<Q> as long as T is a subtype of (extends or implements
Q). Why didn't the library designers just define this as the code below?

Well, consider the case:

This would be illegal if L were forced to be a List<String> .

Python's way

String[] AS = new String[3];

Object[] AO = AS;

AO[0] = new int[] {1, 2};

class NumericSet<T extends Number> extends HashSet<T> {

 /** My minimal element */

 T min() { ... }

}

/** Set all elements of L to X. */

static <T> void fill(List<? super T> L, T x) { ... }

/** Set all elements of L to X. */

static <T> void fill(List<T> L, T x) { ... }

static void blankIt(List<Object> L) {

 fill(L, " ");

}

af://n53
af://n58

Here is an example of the complexity that generics add. You might contemplate in all of this
how Python handles this. Well, in fact, Python doesn't bother with any of this because it
doesn't do compile-time checks and all: it uses an example of duck typing: if it walks like a
duck, and quacks like a duck, then it is a duck.

And here's one final example also from the Collections library:

Here, the items of L have to have a type that is comparable to T or to some super-type of T .

Should L be able to contain key ? It doesn't appear so: because it could be a list of some entirely
different type, just so long as that type is declared comparable to T or some super-type of it.
Sounds pretty weird, and a niche use case that has few (if any) practical benefits, but it is allowed.

Dirty Secrets Behind the Scenes

Java's design for parameterized types was constrained by a desire for backward compatibility:
Java had been out for a while by the time version 1.5 rolled around, and the designers did not
want the existing code or compilers to be obsolete. Thus, when you write:

Java is instead doing:

It supplies the casts automatically, and also throws in some additional checks. If it cannot
guarantee that all those casts will work, Java will throw a warning about "unsafe" constructs,
which you might have seen in Homework 6.

Limitations

Because of those design choices, there are some limitations to generic programming:

Since all kinds of Foo or List are really the same:

L.instanceOf(List<String>) will be true even when L is a List<Integer> .

Inside the class, you cannot create new instances of, arrays of or check the instance of
the generic type T :

new T()

new T[]

and x.instanceOf(T) are all not legal

static <T> int binarySearch(List<? extends Comparable<? super T>> L, T key) {

... }

class Foo<T> {

 T x;

 T mogrify(T y) { ... }

 Foo<Integer> q = new Foo<Integer>();

 Integer r = q.mogrify(s);

}

class Foo { // This is called the "raw type".

 Object x;

 Object mogrify(Object y) { ... }

 Foo q = new Foo();

 Integer r = (Integer) q.mogrify((Integer) s);

}

af://n76
af://n82

Primitive types are not allowed as type parameters: we cannot have an ArrayList<int> ,
for example, which is fortunately less of an issue with autoboxing and unboxing.
Unfortunately, it has a significant cost on efficiency.

Language Design

Just so you know, C# and Python, which came later than Java, both did not have this
problem. They decided to bite the bullet and make the type parameters visible. As a result,
that alleviated this particular problem.

For the most part, however, this is not a big deal. You aren't really supposed to use
instanceOf in significant capacities. The restrictions on creating new instances and arrays
of generics are perhaps more serious, but can also be alleviated: instead of new T[] , you
can say new Object[] , and because of the previously discussed problem, will usually work.
And instead of new T() , you can also use factory methods to produce your objects instead
of constructors, which you saw examples of in Project 0, and will see more of in Project 2.

	CS61B Lecture 25
	Java Generics
	The Old Days
	Basic Parameterization
	Type Instantiation
	Parameters on Methods
	Wildcards
	Subtyping
	Java Inconsistencies

	Type Bounds
	Dirty Secrets Behind the Scenes
	Limitations

