
$$

$$

CS61B Lecture 28
Friday, April 3, 2020

Sorting by Selection

Let's look at another use for priority queues, known as heapsort, where we will keep selecting
the smallest (or largest) element. This given as

algorithm (N remove-first operations). Since we remove items from the end of the heap, we can
use that area to accumulate the result:

Before, we created heaps by insertion to an initially empty heap. If we are given an array of
unheaped data to start with, there is a faster procedure, assuming our heap is indexed from 0:

At each iteration of the p loop, only the element at p might be out of order with respect to its
descendants, so re-heap-ifying downward will restore the subtree rooted at p to proper heap
ordering.

O(N lg N)

void heapify(int[] arr) {

 int N = arr.length;

 for (int k = N / 2; k >= 0; k -= 1) {

 for (int p = k, c = 0; 2*p + 1 < N; p = c) {

 reheapify downward from p;

 }

 }

}

af://n2
af://n4

It looks like the procedure for re-inserting an element after the top element of the heap is
removed, repeated N/2 times, but instead of being:

it is:

Cost of creating a heap

In general, worst-case cost for a heap with h + 1 levels is:

Alas, since the rest of heapsort still takes

this does not improve its asymptotic cost.

Merge sorting

The idea behind merge sorting is to divide data into 2 equal parts, recursively sort halves, and
then merge the results. The algorithmic complexity is:

Mergesort is good for external sorting:

First break data into small enough chunks to fit in memory and sort.
We then repeatedly merge bigger and bigger sequences.

We can merge K sequences of arbitrary size on secondary storage using

memory complexity:

af://n16
af://n23

Internal Merge Sort

To perform internal sorting, we can use a binomial comb to orchestrate it:

What is the motivation for doing a binomial comb over an in-place merge sort? Well, as it turns
out, if we have two sorted arrays, doing an in-place merge sort is harder than it sounds, and if we
were to follow all the steps, it turns out to be quite similar to the procedure of using a binomial
comb.

Quicksort: speed through probability

The idea behind quicksort is to partition data into pieces: everything greater than some pivot
value at the high end of the sequence, and everything less than or equal to on the low end. We
repeat this recursively on the high and low pieces.

For speed, we stop when the pieces are "small enough" and do insertion sort instead. Why?
Insertion sort has low constant factors. by design, no item will move out of its piece, so when the
pieces are small, the number of inversions is too.

We do however, have to choose our pivot well. One good example would the median of the first,
last and middle items of the sequence. A well-chosen pivot will result in a fairly quick sorting
algorithm in the usual case (not the worst case, however).

In this example, we continue until the pieces of size less than or equal to 4. The pivots for the
next step are starred, and we arrange to move pivot to dividing line each time, and the last step
in insertion sort:

Data[] V = new Data[K];

for (all i; while V is not sorted) {

 // set v[i] to the first data item of sequence i;

 // Find k so that V[k] is the smallest;

 // Output V[k], and read new value into V[k] if present;

}

af://n36
af://n40

Performance

If our choice of pivots is good, we will divide the data in two each time:

with a good constant factor relative to merge or heap sort. If the choice of pivots is bad, most
items on one side each time, taking:

In the best case, quicksort takes:

thus, insertion sort is better for nearly ordered input sets.

An interesting point: randomly shuffling the data before sorting makes:

very unlikely! The probability is quite low of encountering the best case.

Quick Selection

For a given K , if we want to find the K -th smallest element in the data, how can we do it?

The obvious method would be to sort, select the K -th smallest element, which would take:

If K is less than or equal to some constant, we could easily do it in linear time by going through
the array and keeping the K smallest items.

We can do a little better (or worse by some metrics) by having a high probability of

time for all K by adapting quicksort:

Partition around some pivot, p, as in quicksort, arrange that pivot ends up at dividing line.
Suppose that in the result, pivot is at index m, all elements ≤ pivot have indices ≤ m.
If m = K , you’re done: p is answer.
If m > K , recursively select K -th from left half of sequence. – If m < k, recursively select (k −
m − 1) -th from right half of sequence.

Here's an example: find item 10 in the sorted array:

af://n47
af://n58

Performance of Selection

For this algorithm, if M is roughly in the middle each time, the cost is:

But in the worst case, you get:

just like quicksort.

By another, non-obvious algorithm, we can actually achieve linear worst case time for any K ,
which you will see in CS170.

af://n77

	CS61B Lecture 28
	Sorting by Selection
	Cost of creating a heap

	Merge sorting
	Internal Merge Sort

	Quicksort: speed through probability
	Performance
	Quick Selection
	Performance of Selection

