
CS61B Lecture 29
Monday, April 6, 2020

So far, we have just looked at the given complexity of certain algorithms. There is another
question we can ask: for a given problem, what is the lowest worst-case time we can have for a
solution? In other words, we are attempting to guarantee a lower bound for a set of solutions to a
problem, which is generally harder to come up with than an upper bound.

There's an obvious guess for a lower bound: linear time, since you must at the very least read in
all the data, but it's not particularly helpful in this case. Let's work methodically.

Faster than Linearithmic

We can prove that if the only operation your program is allowed to do is to take two elements
and compare them and move the data around, then:

is the best worst-case time you can get out of any algorithm. This is the tricky part: with lower-
bound arguments, you must always specify precisely what the algorithms are allowed to do, so
that no one can cheat the specifications.

Here's the reasoning behind this lower bound argument: there are N! possible ways the data
could be scrambled. Therefore, our program must be set up in such a way so that it can do N!
different combinations of data-moving operations, and there must thus be N! possible
combinations of outcomes of all the if-tests in your program (since those determine what move
gets moved where, assuming all comparisons are 2-way).

Can we put a bound of the height? Since each if-tests goes two ways, the number of possible
outcomes for k if-tests is

Thus, we need enough tests such that:

which means

Using Stirling's approximation, which allows us to get an approximation of a factorial,

af://n0
af://n4

This tells us that k , the worst-case number of tests needed to sort N items by comparison
sorting is in

because there must be cases where we need (some multiple of)

comparisons to sort N things.

Distribution

Suppose we can do more than compare keys. For example, how can we sort a set of N integer
keys whose values range from 0 to kN, for some small constant k?

One technique is distribution sorting:

We put the integers into N buckets; integer p goes to bucket

At most, there will be k keys per bucket, so we catenate and use insertion sort, which will
now be fast.

For example, with k = 2 and N= 10,

Now insertion sort is much faster. Putting things in buckets takes

and insertion sort takes

Thus, when k is a fixed constant, then we have sorting in time

Distribution Counting

Here's a very similar technique for a different problem: count the number of items less than
some value.

If

af://n52
af://n80

then in sorted order, the j -th item with value p must be item

For example, if we have a set of numbers in the range [0, 1000), and that exactly 15 of them are
less than 50, then the result of sorting will look like this:

In other words, the count of numbers less than k gives the index k in the output array.

If there are N items in the range 0 to M -1, it gives another linear time algorithm

(including both M and N to allow for both duplicates and cases where M >> N).

Example

Suppose all items are between 0 and 9 as in this example:

The "counts" line gives the number of occurrences for each key.
The "running sum" gives the cumulative count of keys that are less than each value, which
tells us where to put each key:
The first instance of key k goes into slot m , where m is the number of key instances that
are less than k .

Here's another example:

af://n113

Radix Sort

The idea behind radix sort (an old one) is to sort keys one character at a time. We can use
distribution counting for each digit, and we can either work right to left (LSD radix sort, where
LSD is short for least significant digit), or left to right (MSD radix sort).

LSD radix sort is venerable, and can be used for punched cards:

The reason we do it from behind is that this sorting is stable, and because we recursively call the
algorithm, we are guaranteed that at each step after the first, any character after the one we are
sorting by is in the order we want it in.

MSD Radix Sort

MSD radix sort is a bit more complicated because we must keep lists from each step separate.
However, it has the benefit of avoiding processing one element lists (let and set do not need to
be processed after the first in the example below):

af://n136
af://n152

The * indicates which bin is being sorted at that step.

Performance of Radix Sort

Radix sort takes

where B is the total size of the key data, which means it is different from every algorithm we
have looked so far, which are proportional to the number of keys/records.

How can we compare this algorithm to the others then?

To have N different records, we must have at least

long, because that's how many characters you need to have at least N different keys. For
example, if you have a 26-character alphabet, the size of a word, given there are

words, there has to be at least two characters to distinguish them all from that alphabet.

In other words:

Furthermore, comparison actually takes time

where K is the size of the key in the worst case (think about how we compare strings to each
other).

That means the

comparisons really mean

operations.

af://n154

While radix sort would take

time with minimal-length keys, we must also work to get good constant factors with radix sort.

Search Trees

A search tree is in sorted order, when read in inorder.

Need balance to really use for sorting [next topic].

Given balance, same performance as heapsort: N insertions in time of lg N each, plus linear
time to traverse, gives:

Summary

Insertion sort:

comparisons and moves, where k is the maximum amount of data displaced from final
position, which is good for small datasets, or almost ordered data sets.

Quicksort:

with good constant factors if the data is not "pathological" (designed specifically to cause
problems for the algorithm, e.g. intentionally causing it to always pick the wrong pivot).
Worst case of

Merge sort:

guaranteed. Good for external sorting.

Heapsort/tree sort with guaranteed balance:

guaranteed.

Radix sort, distribution sort:

(number of bytes). Also good for external sorting.

af://n200
af://n341

	CS61B Lecture 29
	Faster than Linearithmic
	Distribution
	Distribution Counting
	Example

	Radix Sort
	MSD Radix Sort
	Performance of Radix Sort

	Search Trees
	Summary

