
CS61B Lecture 3
Monday, January 27, 2020

Announcements

Labs are normally due at midnight Friday. Last week’s is due tonight.

Values and Containers

Values are numbers, booleans and pointers. Values never change.

Simple containers contain values. Examples include variables, fields, individual array elements,
parameters.

Structured containers

Structured containers contain (0 or more) simple containers:

Class Object
Array Object
Empty Object

In 61B, when you draw environment diagrams, you should indicate what type of object they are.

int x = 2;

Str y = a;

int[] arr = new int[]{2,4,6};

af://n0
af://n4
af://n8
af://n12

Pointers

Pointers (or references) are values that reference (point to) containers.

One particular pointer, called null, points to nothing.

In Java, structured containers contain only simple containers, but
pointers allow us to build arbitrarily big or complex structures anyway.

Compared to Python, Java arrays are of a fixed size. Once you define an array of some size, for
example 3 in the above code, you cannot add another element to the end.

It would be really nice if we had some data structure that we could keep adding to the end of...
turns out we have. Linked lists are the data structure of choice here!

Containers in Java

Containers may be named or anonymous.

In Java, all simple containers are named, all structured containers are anonymous, and pointers
point only to structured containers.
(Therefore, structured containers contain only simple containers).

In Java, assignment copies values into simple containers, exactly like Scheme and Python! (Python
also has slice assignment, as in x[3:7] =..., which is shorthand for something else entirely.)

Defining New Types of Object

Class declarations introduce new types of objects. Example: list of integers:

public class IntList {

 // Constructor function (used to initialize new object)

 /** List cell containing (HEAD, TAIL). */

 public IntList(int head, IntList tail){

 this.head = head; this.tail = tail;

 //Java uses this instead of self

 }

 // Names of simple containers (fields)

 // WARNING: public instance variables usually bad style!

af://n25
af://n31
af://n35

Primitive operations

 public int head;

 public IntList tail;

}

af://n38

Different ways of viewing pointers

And another:

Destructive vs. Non-Destructive Methods

In 61A, we learnt about mutation operations. We now call them destructive and non-destructive
methods. A destructive method mutates the original input, while a non-destructive method does
not.

For example, Given a (pointer to a) list of integers, L, and an integer increment n, return a list
created by incrementing all elements of the list by n.

af://n43

So how does one actually write incrList ? We can use recursion:

Iterative IncrList

The difference with this version of incrList is that it builds the list from front to back. You can
see the code is much longer, and it is also not tail recursive.

static IntList incrList(IntList P, int n){

 return /*(P, with each element incremented by n)*/

}

static IntList incrList(IntList P, int n){

 if (P == null) {

 return null;

 } else {

 return new IntList(P.head+n, incrList(P.tail, n));

 }

}

static IntList incrList(IntList P, int n) {

 if (P == null) {

 return null;

 } else {

 IntList result, last;

 //This initializes the variables.

 result = new IntList(P.head+n, null);

 last = result;

 }

 while (P.tail != null) {

 P = P.tail;

 last.tail = new IntList(P.head+n, null);

 last = last.tail;

 }

 return result;

}

af://n50

	CS61B Lecture 3
	Announcements
	Values and Containers
	Structured containers
	Pointers
	Containers in Java

	Defining New Types of Object
	Primitive operations

	Destructive vs. Non-Destructive Methods
	Iterative IncrList

