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Balanced Search  

Why are search trees important? They are data structures in which insertion and deletion is fast 
on every operation, and support both range queries and sorting, unlike the hash table.

However, the tree's logarithmic performances requires the tree to be "bushy", and "stringy" trees 
perform more like linked lists. It suffices that heights of any two subtrees of a node differ by no 
more than some constant factor K .

B-Trees  

Here's an example of a search tree where we force a tree to be of a certain height:

The above is an order M  B-Tree, an M -ary search tree, where M  is some value greater than 2.

It obeys the search tree property, where keys are sorted in each node. All keys in subtrees to the 
left of a key, K , are less than K , and all to the right are greater than K . Children at the bottom of 
a tree are all empty and equidistant from root.

Searching is a simple generalization of a binary search.

How can we maintain this tree's balance. Here's an idea: if a tree grows/shrinks only at the root, 
then the two sides will always have the same height.

Each node, except the root, has a number of children N

and one key between each "two" children. The root has between 2 and M  children in a non-
empty tree.

To insert, we add just above the bottom, and split overfull nodes as needed by moving on key up 
to its parent.
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To find, we use the search tree property. The diagram below shows us the path taken when 
finding 40 in this tree. 

Keys on either side of each child pointer bracket 40, and this is how we find things.

Because each node has at least 2 children, and all leaves are at the bottom, the height must be 

In a real-life B-Tree, the order is typically much bigger, comparable to the size of a disk sector, 
page, or other convenient unit of input/output.

Red-Black Trees  

Red-black trees are a type of binary search tree with constraints on how unbalanced it can be. Its 
nodes are colored red and black; the rules on how nodes are colored have the effect of keeping 
the tree balanced, such that searching is always 
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Red-black trees are used for Java's TreeSet  and TreeMap  types. When items are inserted or 
deleted, the tree is rotated and recolored as needed to restore the balance.

1. Each node is either (conceptually) colored red or black. 
2. The root is always black. 
3. Every leaf node contains no data, like a B-Tree, and is black.
4. Every leaf has the same number of black ancestors.
5. Every internal node has two children. 
6. Every red node has two black children. 

The last three conditions guarantee searching is always 

Every red-black tree corresponds to a 2-4 tree, and the operations on one can correspond to 
those on the other. Each node of the 2-4 tree corresponds to a cluster of 1-3 red-black nodes in 
which the top node is black and any others are red.

Left-Leaning Red-Black Search Trees (LLRBST)  

A node in a 2-4 tree or a 2-3 tree with three children may be represented in two different ways in 
a red-black tree:
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We can considerably simplify insertion and deletion in a red-black tree by always choosing the left 
option, ensuring a one-to-one relationship between a 2-4 tree and red-black trees. The resulting 
trees are called left-leaning red-black search trees (LLRBST).

To further simplify this, let's restrict ourselves to red-black trees that correspond to 2-3 trees 
(whose nodes have no more than 3 children), such that no red-black node has two red children.

Red-Black Insertion and Rotations  

Inserting at the bottom is just like a binary tree (color red except when tree initially empty). We 
then rotate (and recolor) to restore red-black property, and thus balance. The rotation of trees 
preserves binary tree property, but changes balance.

For our purposes, we’ll augment the general rotation algorithms with some recoloring. Transfer 
the color from the original root to the new root, and color the original root red. Examples:

Neither of these changes the number of black nodes along any path between the root and the 
leaves.

Our algorithms temporarily create nodes with too many children, before splitting them up. A 
simple recoloring is analogous to splitting nodes, in a process we will call colorFlip .
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Here, key 10 joins the parent node, splitting the original.

The Algorithm  

The algorithm, as written by Robert Sedgewick of Princeton,  is as follows, where RBTree  is an 
ordinary BST with color:

How does one fixup  a tree? Well:

1. Convert right-leaning trees into left-leaning:

Sometimes node B  will be red, so both B  and D  end up red. This is fixed by...

2. Rotate linked red nodes into a normal 4-node, temporarily:

RBTree insert(RBTree tree, KeyType key) {

    if (tree == null) { return new RBTree(key, null, null, RED); }

    int cmp = key.compareTo(tree.label());

    if (cmp < 0) {

        tree.setLeft(insert(tree.left(), key));

    } else {

        tree.setRight(insert(tree.right(), key));

    }

    return fixup(tree);

}

if (tree.right().isRed() && tree.left().isBlack()) {

    tree.rotateLeft();

} 
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3. Break up 4-nodes into 3-nodes or 2-nodes:

4. As a result of other fixups, or of insertion into the empty tree, the root may end up red, so 
color the root black after the rest of insertion and fixups are finished (this is not part of the 
fixup  method). This is always okay at the root, without any side effects.

Insertion Examples  

if (tree.left().isRed() && tree.left().left().isRed()) {

    tree.rotateRight();

}

if (tree.left().isRed() && tree.right().isRed()) {

    colorFlip(tree);

}
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