
CS61B Lecture 31
Friday, April 10, 2020

Announcements

Project 3, Gitlet, has been released. It is due on May 1st, with a checkpoint due shortly
before. No skeleton code is being provided as part of the project.

Several interesting features of Git that you may need to know will be covered in lecture
in the next few weeks

Trie

The worst case cost of a comparison for a String is its length, thus a

comparison really means

where ML is the length of the string. To look for key X , we keep looking at the same characters of
X M times. Can we do better?

With the set of keys:

The ticked lines show the paths follow for "abash" and "fabric". Each internal node corresponds
to a possible prefix.

Adding items to a trie is show in the below example, adding "bat" and "faceplate", where the new
edges are ticked:

{a, abase, abash, abate, abbas, axolotl, axe, fabric, facet}

af://n14
af://n17
af://n24

Scrunching Arrays

This isn't really related to tries (we could have internal nodes indexed by character), but say we
have multiple sparsely populated arrays, with the remainder being null values. This is a waste of
space.

How can we fix this? Well, we can put arrays on top of each other, using null entries of one array
to hold non-null elements of another, using extra markers to tell which entries belong to which
array.

Why shouldn't we do this in tries? It's hard to expand our try, the idea is a bit complicated, and
this is really more useful for representing large, sparse, fixed tables with many rows and columns.

The number of children in a trie tends to drop drastically when one gets a few levels down from
the root, so we should use arrays for the first few levels, which usually have more children, and
then linked lists for the lower levels.

Skip Lists

af://n49
af://n61

A skip list can be thought of as a kind of n -ary search tree in which we choose to put the keys at
“random” heights. More often thought of as an ordered list in which one can skip large segments.

To search, we start at the top layer on the left, search until the next step would overshoot, then
go down one layer and repeat. When we search for 125 and 127 in the above example, the gray
nodes are looked at, and the darker gray nodes are overshoots.

The heights of the nodes were chosen randomly, such that there are about half as many nodes
that are k or higher as there are that are k high. This technique, called probabilistic balancing,
makes searches fast with high probability.

To add to and delete from skip lists, the procedure is shown below:

Summary

Balance in search trees allows us to realize

performance.

B-Trees and RBTs give us

performance for searches, insertions and deletions. B-Trees are good for external storage
because the large number of nodes minimize the number of I/O operations.

Tries give

af://n74

performance for searches, insertions and deletions, where B is the length of the key being
processed. However, they are hard to manage space efficiently in.

Skip lists give us probable

performance for searches, insertions and deletions. They are easy to implement, and are
presented here for interesting ideas of probabilistic balancing and randomized data
structures.

e

	CS61B Lecture 31
	Announcements
	 Trie
	Scrunching Arrays

	Skip Lists
	Summary

