
CS61B Lecture 32
Monday, April 13, 2020

Git Fundamentals

Git is a distributed version-control system that stores snapshots of the files and directory
structure of a project, keeping track of their relationships, authors, dates and log messages.

It is distributed, in that there can be many copies of a given repository, each supporting
independent development, with tools to transmit and reconcile versions between repositories.
And it is extremely fast as these things go.

Git was first dveeloped by the creator of Linux, Linus Torvalds, who used a proprietary version
control system called Bitkeeper in the development of Linux. The initial implementation effort
took roughly 2 to 3 months, and was released in 2005.

Initially, it was a collection of basic primitives called "plumbing" that couild be scripted to provide
desired functionality. The higher-level commands ("porcelain") was built on top of the plumbing
to provide a convenient user interface.

Conceptual Structure

Abstraction is of a graph of versions or snapshots (called commits) of a complete project. The
graph structure reflects ancestory: which versions came from which. Each commit contains:

A directory tree of files
Information about who committed and when
A log message
Pointers to the commit(s) from which the commit was derived.

The main internal components of Git consist of four types of objects:

Blobs, which hold contents of files
Trees, directory structures of files
Commits, contain references to trees and additional information (committer, date, log
message)
Tags, references to commits or other objects, with additional information meant to identify
releases and other useful or important information. We will not further discuss tags today.

af://n196
af://n199
af://n204

Each commit has a name that uniquely identifies it to all versions. Repositories can trasmit
collections of versions to each other.

Transmitting a commit from repository A to B requires only the transmission of those objects
(files or directory trees) that B does not yet have (allowing speedy updates).

Repositories maintain named branches, which are simply identifiers of particular commits
updated to keep track of the most recent commit in various lines of development. Likewise, tags
are essentially named pointers to particular commits. They differ from branches in that they are
usually not changed.

Internal Structure

af://n230

Each Git repository is contained in a directory. The repository may either be bare (just a collection
of objects and metadata), or may be included as part of a working directory. The data of the
repository is stored in various objects corresponding to files (or other "leaf" content), trees and
commits. To save space, data in files is compressed, and Git can garbage collect objects from time
to time.

The Pointer Problem

Objects in Git are files. How should we represent pointers between them? We want to be able to
transmit objects from one repository to another with different contents, and we only want to
transfer objects that are missing in the target repository. How can we transmit the pointers, and
how do we know what they are?

We could use a counter in each repository to give each object a unique name, but how can we
make this work consistently for two independent repositories.

Content Addressable File System

We could use some way of naming objects that is universal, using the names as pointers. This
solves the problem of "which objects don't you have?" in an obvious way. Conceptually, what is
invariant about an object, regardless of its repoistory, is its contents. We obviously cannot use the
contents as the name, but what we could do is use a hash of the contents as the address. This
doesn't really work, because we know from hashing it's close to impossible for a hash function to
be completely unique. The brilliant idea is we do it anyway, and pretend the hash code is unique.

How a Broken Idea Can Work

The idea is to use a hash function so unlikely to have a collision we can ignore this possibility. A
cryptographic hash function has this relevant property. Such a function f is designed to
withstand cryptoanalytic attacks, which has these properties:

Pre-image resistance: given

it should be computationally infeasible to find such a message m .

Second pre-image resistance: given message m1 , it should be infeasible to find

such that

Collision resistance: should be difficult to find

such that

With these properties, the scheme of using hashes as name is extremely unlikely to fail, even
when the system is used maliciously.

SHA-1

af://n232
af://n235
af://n237
af://n256

Git uses SHA-1 (Secure Hash Function 1). We can play around with this using the hashlib
module in Python 3. All object names in Git are therfore 160-bit hash codes of contents in hex.

For example, a recent commit in the shared CS61B repository could be fetched with:

SHA-1 is an older cryptographic function; it has recently been phased out of security
implementations because it has been demonstrated to be able to collide (violating property 3).
However, for the purposes of Git naming, it still works fine, and we are still very very unlikely to
get the same commit name for two different files.

git checkout e59849201956766218a3ad6ee1c3aab37dfec3fe

	CS61B Lecture 32
	Git Fundamentals
	Conceptual Structure
	Internal Structure
	The Pointer Problem
	Content Addressable File System
	How a Broken Idea Can Work
	SHA-1

