
CS61B Lecture 33  
Wednesday, April 16, 2020

Graphs  

Graphs are data structures that can be used to express non-hierarchically related items. For 
example,

Networks: pipelines, roads, assignment problems
Processes: flow charts, Markov models
Partial orderings: PERT charts, makefiles
Connected structures as used in Git

A graph consists of:

A set of nodes, otherwise known as vertices.
A set of edges, pairs of nodes. Nodes with an edge between are adjacent.
Depending on the problem, nodes or edges may have labels or weights.

Typically we call the node set 

and the edge set 

If the edges have an order (first, second), they are called directed edges, and the graph is a 
directed graph (digraph). Otherwise, it is an undirected graph.

Edges are incident to their nodes. Directed edges exit one node and enter the next.

A cycle is a path without repeated edges leading from a node back to itself. A graph is cyclic if it 
has a cycle, otherwise it is acyclic. We can combine these terms, e.g. Directed Acyclic Graph - 
DAG.

af://n0
af://n6


Trees are graphs. A graph is connected if there is a (possibly directed) path between every pair of 
nodes. That is, if one node pair is reachable from the other.

A DAG is a (rooted) tree iff connected, and every node but the root has exactly one parent.

A connected, acyclic, undirected graph is also called a free tree, free as in we are free to pick the 
root. For example, all of the following are the same graph:

Uses  

Here are a few ways one might use graphs:

af://n77


 

Representation  

It is often useful to number the nodes, and use the numbers in edges.

Edge List Representation  

af://n85
af://n88


This is where we each node contains some kind of list, of its successors (and possibly 
predecessors):

Edge Set Representation  

Collection of all edges. For above:

Adjacency matrix  

We can also represent connections with matrix entry. Shown above:

Traversing Graphs  

Many algorithms on graphs depend on traversing all or some nodes. We can't quite use recursion 
because of cycles, and even in acyclic graphs, we can still get combinatorial explosions:

In the above example, treating 0 as the root and doing recursive traversal down the two edges at 
each node gives us:

operations!

Typically, we try to visit each node a constant number of times.

Recursive Depth-First Traversal  

We can fix looping and combinatorial problems using the "breadcrumb" method used in the 
maze example in an earlier lectures. We mark nodes as we traverse them, and don't traverse 
previously marked nodes.

It makes sense to talk about preorder and postorder traversal as we did for trees.

void preorderTraverse(Graph G, Node v) {

    if (!v.marked) {

        mark(v);

        // visit v

        for (/* Edge(v, w) in G */) {

            preorderTraverse(G, w);

        }

af://n94
af://n100
af://n110
af://n128


We are often interested in traversing all nodes of a graph, not just those reachable from one 
node. Thus, we can repeat the procedure as long as there are unmarked nodes:

Topological Sorting  

 With topological sorting, the problem we are trying to solve is finding a linear order of nodes 
consistent with the edges. That is, order the nodes 

such that 

is never reachable from 

if 

    }

}

            

void postorderTraverse(Graph G, Node v) {

    if (!v.marked) {

        mark(v);

        for (/* Edge(v, w) in G */) {

            postorderTraverse(G, w);

        }

        // visit v

    }

}

void preorderTraverse(Graph G) {

    clearAllMarks();

    for (Node v : G) {

        preorderTraverse(G, v);

    }

}

void postorderTraverse(Graph G) {

    clearAllMarks();

    for (Node v : G) {

        postorderTraverse(G, v);

    }

}

af://n142


Gmake (a build control system) and PERT charts both solve this.

Sorting and Depth-First Search  

Suppose we reverse the links on the graph above. If we do a recursive DFS on the reverse graph, 
we will find all nodes that must come before H.

When the search reaches a node in the reversed graph and there are no successors, we know it is 
safe to put that node first.

In general, a postorder traversal of a reversed graph visits nodes only after all predecessors have 
been visited.

General Graph Traversal Algorithm  

COLLECTION OF VERTICES fringe;

fringe = INITIAL COLLECTION;

while (!fringe.isEmpty()) {

    Vertex v = fringe.removeHighestPriorityItem();

    if (!v.marked) {

        v.mark();

        v.visit();

        for (Edge w : v) {

            if (w.needsProcessing()) {

                fringe.add(w);

            }

        }

    }

}

af://n162
af://n169


Replace COLLECTION OF VERTICES , INITIAL COLLECTION  etc. with various types, expressions, or 
methods to different graph algorithms.

DFS Algorithm  

If we wanted to visit every node reachable from v  once, we visit nodes further from starting 
point first:

Topological Sort in Action  

Stack<Vertex> fringe;

fringe = stack containing v;

while (!fringe.isEmpty()) {

    Vertex v = fringe.pop();

    if (!v.marked) {

        v.mark();

        v.visit();

        for (Edge w : v) {

            if (!w.marked) {

                fringe.push(w);

            }

        }

    }

}

af://n180
af://n189


Shortest Paths  

Djikstra's Algorithm is a series of steps on how to compute the shotrest paths from a given 
source node, s , to all nodes, given a graph with non-negative edge weights, where shortest 
means sum of weights along the path is the smallest.

PriorityQueue<Vertex> fringe;

for each node v { v.dist() = ∞; v.back() = null; }

s.dist() = 0;

fringe = priority queue ordered by smallest .dist();

add all vertices to fringe;

while (!fringe.isEmpty()) {

    Vertex v = fringe.removeFirst();

    For (Edge w : v) {

    if (v.dist() + weight(v,w) < w.dist())

        { w.dist() = v.dist() + weight(v,w); w.back() = v; }

    }

}

af://n193



	CS61B Lecture 33
	Graphs
	Uses
	Representation
	Edge List Representation
	Edge Set Representation

	Adjacency matrix
	Traversing Graphs
	Recursive Depth-First Traversal

	Topological Sorting
	Sorting and Depth-First Search

	General Graph Traversal Algorithm
	DFS Algorithm
	Topological Sort in Action

	Shortest Paths



