
CS61B Lecture 35
Monday, April 20, 2020

Random Sequences

Why do we use random sequences? There are many uses for it:

Choose statistical samples
Simulations
Random algorithms
Cryptography
And of course, games

What is a random sequence anyway? We have several possible definitions.

A sequence where all numbers occur with equal frequency.
1, 2, 3, 4, ...
An unpredictable sequence where all numbers occur with equal frequency.
0, 0, 0, 1, 1, 2, 2, 2, 2, 2, 3, 4, 4, 0, 1, 1, 1, ...
Besides, what is wrong with 0, 0, 0, 0... anyway? Couldn't we get this by random selection?

If you statistics and probability spaces, you'll get a formal definition. As it turns out, even if it is
definable, a "truly" random sequence is difficult for a computer or human to produce.

Pseudo-Random Sequences (PRS)

For most purposes, we only need a sequence that satisfies a certain statistical property, even if it
is deterministic. We need a sequence that is hard, or impractical, to predict.

A pseudo-random sequence is a deterministic sequence that passes some given set of statistical
tests. For example, look at lengths of runs increasing or decreasing contiguous subsequences.
Unfortunately, the statistical criteria to be used are quite involved. For more details, see Knuth's
book.

Generating PRSes

It is not as easy as you might think, because seemingly complex jumbling methods can give rise
to bad sequences. The linear congruential method is a simple method used by Java:

Usually, m is a large power of 2. For the best results, we want

and

without common factors.

af://n0
af://n3
af://n25
af://n28

This gives a generator with a period of m (the length of sequence before repetition), and
reasonable potency (measures certain dependencies among adjacent x-values).

We want bits of a to have no obvious pattern and pass certain other tests (see Knuth).

Java uses

to compute 48-bit pseudo-random numbers, which is good enough for many purposes. But it is
important to note it's not cryptographically secure.

What Can Go Wrong?

If we choose these numbers wrong, we can end up with a PRS that has short periods and having
many impossible values (such as if a , c , m were all even).

Another potential shortfall is obvious patterns, such as just using the lower 3 bits of x-values in
Java's 48-bit generator, to get integers in the range of 0 to 7. By the properties of modular
arithmetic:

So we have a period 8 in this generator, sequences like:

are impossible, which is why Java doesn't give you the raw 48 bits (and will usually take the top
bits than last bits).

Bad potency leads to bad correlations: the infamous IBM generator RANDU used

When RANDU is used to make 3D points:

where S scales to a unit cube.

The points would be arranged in parralel planes with voids between. So "random points" won't
ever get many points in the cube:

Additive generators

af://n41
af://n55

Other choices than 24 and 55 are possible. This generator has a period of

for some

Here's a simple implementation with a circular buffer:

where

is initialized to some "random" initial seed values.

Cryptographic PRN Generators

The simple form of linear congruential generators mean that one can predict future values after
seeing relatively few outputs, not good if we want unpredictable output. A cryptographic PRN
generator (also called CPRNG, not PRS because S indicates there is a pattern) has the properties
that:

Given k bits of a sequence, no polynomial-time algorithm can guess the next-bit with better
than 50% accuracy.
Given the current state of the generator, it is also infeasible to reconstruct the bits it
generated in getting to that state.

To do this, we start with a good block cipher -- an encryption algorithm that encrypts blocks of N
bits (and not like Enigma, which works 1 byte at a time). AES is an example.

As a seed, provide a key, K , and an initialization value I . The j -th pseudo-random number is
now

where

is now the encryption of message y using key x .

Adjusting Range and Distribution

Given a raw sequence of numbers from above methods in range, for example, 0 to 2^48, how can
we get uniform random integers in the range 0 to n -1?

If n is a power of 2, it's easy, we simply use the top k bits of the next x-value (the bottom k-bits
are not as random).

For other n values, we must be careful of slight biases at the ends. For example, if we compute:

i = (i + 1) % 55;

X[i] += X[(i + 31) % 55]; // Why +31 instead of -24?

return X[i]; // modulo 2^32

x[0 ... 54]

af://n66
af://n79

using all integer division, and if

is rounded down, then you get n as a result.

If you try to fix that by computing

instead, the probability of getting n -1 will be wrong.

To fix the bias problems where n does not evenly divide 2^48, Java throws out values after the
largest multiple of n less than 2^48:

Arbitrary Bounds

How to get an arbitrary range of integers (L to U)?

To get random float , x, in range between 0 inclusive and d exclusive, compute

Random double is a bit more complicated, because we need two integers to get enough bits.

General Distribution

Our distribution between two finite bounds is a distribution, but what if we wanted to achieve a
different distribution? Say the normal distribution?

int nextInt(int n) {

 long X = next random long; // (0 <= X <= 2^48)

 if (n is 2^k for some k) {

 return top k bits of X;

 }

 int MAX = largest multiple of N < 2^48

 while (Xi >= MAX) {

 X = next random long;

 }

 return Xi / (MAX / n);

}

d*nextInt(1<<24) / (1<<24);

long bigRand = ((long) nextInt(1<<26) << 27) + (long) nextInt(1<<27);

return d * bigRand / (1L << 53);

af://n92
af://n98

Curve is the desired probability distribution.

is the probability that random variable

is

The solution is choose y uniformly between 0 and 1, and the corresponding x will be
distributed according to P .

Java Classes

Here are a few useful tools in Java to do probability distribution:

Math.random() gives a random double in [0...1) .

Class java.util.Random is a random number generator with constructors:

Random() generator with a "random" seed based on time.
Random(seed) generator with a given starting value (reproducible).

Methods:

next(k) gives a k -bit random integer.
nextInt(n) gives an int in range [0...n) .
nextLong() gives a random 64-bit integer.
nextBoolean() , nextFloat() , nextDouble() give the next random values of other
primitive types.
nextGaussian() gives a normal distribution with mean 0 and STD 1 to produce a bell
curve.

Collections.shuffle(L,R) for list L and Random R permutes L randomly, using R .

Shuffling

A shuffle is a random permutation of some sequence, and is an obvious, dumb technique for
sorting an N -element list:

Generate N random numbers.
Attach each to one of the list elements.

af://n109
af://n136

Sort the list using random numbers as keys.

We can do quite a bit better:

Random Selection

Same technique allows us to select N items from a list:

It's not terribly efficient for selecting random sequence of K distinct integers from [0...N) with

Alternative Selection Algorithm (Floyd)

Here is another approach:

void shuffle(List L, Random R) {

 for (int i = L.size(); i > 0; i--) {

 L.get(i-1).swap(L.get(R.nextInt(i)));

 }

}

/** Permute L and return sublist of K>=0 randomly

 * chosen elements of L, using R as random source. */

List select(List L, int k, Random R) {

 for (int i = L.size(); i+k > L.size(); i -= 1)

 L.get(i-1).swap(L.get(R.nextInt(i)));

 return L.sublist(L.size()-k, L.size());

}

/** Random sequence of K distinct integers

* from 0...N-1, 0<=K<=N. */

IntList selectInts(int N, int K, Random R) {

 IntList S = new IntList();

 for (int i = N - K; i < N; i += 1) {

 // All values in S are < i

 int s = R.randInt(i+1); // 0 <= s <= i < N

 if (s == S.get(j) for some j) {

 // Insert value i (which can’t be there

 // yet) after the s (i.e., at a random

 // place other than the front)

 S.add(j+1, i);

 } else {

 // Insert random value s at front

 S.add(0, s);

 }

 return S;

af://n148
af://n153

}

	CS61B Lecture 35
	Random Sequences
	Pseudo-Random Sequences (PRS)
	Generating PRSes
	What Can Go Wrong?
	Additive generators
	Cryptographic PRN Generators
	Adjusting Range and Distribution
	Arbitrary Bounds
	General Distribution
	Java Classes
	Shuffling
	Random Selection
	Alternative Selection Algorithm (Floyd)

