
CS61B Lecture 37
Friday, April 24, 2020

Threads

So far, all of the operations we have done consist of a single sequence of instructions. Each such
sequence is called a thread in Java. Java supports programs containing multiple threads, which
(conceptually) run concurrently. And even on a uniprocessor (or a single-core processor), only
one thread at a time actually runs, while others wait, this is largely invisible.

To allow program access to threads, Java provides the type Thread in java.lang . Each Thread
contains information about, and controls, one thread. Simultaneous access to data from two
threads can cause chaos, so are also constructs for controlled communication, allowing thread to
lock objects, to wait to be notified of events, and to interrupt other threads. This is native to the
language, unlike C, which used library imports to achieve a similar effect, but was not native to
the language.

This does mean we have to distinct things to talk about: a thread, the sequence, and Thread , the
Java library type.

Why do we use threads?

Even when we don't specify it, Java programs always have more than one thread: besides the
main program, other threads clean up garbage objects, receive signals, update the display, and
other stuff.

When programs deal with asynchronous events, it is sometimes convenient to organize into
subprograms, one for each independent, related sequence of events. Threads allow us to
insulate one such program for another.

GUIs are often structured as such: the application does some computation or I/O, another thread
waits for mouse clicks (like 'Stop'), and another pays attention to updating the screen as needed.

Large servers like search engines may be organized this way, with one thread per request. And
sometimes we do have a real multi-core processor.

Multi-thread Mechanics

To specify actions with multiple threads, our classes implement an interface called Runnable ,
which has a single method called run() . Here is how one might specify actions like walking and
chewing gum.

af://n0
af://n3
af://n7
af://n12

We can be more concise by using the fact that Thread implements Runnable .

Avoiding Interference

When one thread has data for another, one must wait for the other to be ready. Likewise, if two
threads use the same data structure, generally only one should modify it at a time, while the
other must wait. We could cause insertions, deletions, modifications etc. to be lost.

We can arrange for only one thread at a time to execute a method on a particular object with
either of the following equivalent definitions:

Communicating Data

Communicating data is tricky, because the faster party must wait for the slower one. Obvious
approaches for sending data from thread to thread don't work:

class Chewer1 implements Runnable {

 public void run() {

 while (true) chewGum();

 }

}

class Walker1 implements Runnable {

 public void run() {

 while (true) walk();

 }

}

Thread chomp = new Thread(Chewer1());

Thread clomp = new Thread(Walker1());

chomp.start(); clomp.start();

class Chewer2 extends Thread {

 public void run() {

 while (true) chewGum();

 }

}

Thread chomp = new Chewer2();

chomp.start();

void f(...) {

 synchronized (this) {

 body of f

 }

}

synchronized void f(...) {

 body of f

}

class DataExchanger {

 Object value = null;

af://n19
af://n23

A bad thing that could happen: one thread can monopolize machine while waiting; two threads
executing deposit or receive simultaneously cause chaos.

Primitive Java Facilities

wait method on Object makes thread wait (not using processor) until notified by notifyAll ,
unlocking the Object while it waits.

ucb.util.mailbox has something like this (simplified):

The use of Java primitives is very error-prone, so wait until CS 162. Mailboxes are higher-level,
and allow the following program structure:

 Object receive() {

 Object r; r = null;

 while (r == null)

 { r = value; }

 value = null;

 return r;

 }

 void deposit(Object data) {

 while (value != null) { }

 value = data;

 }

}

DataExchanger exchanger = new DataExchanger();

// thread1 sends to thread2 with

exchanger.deposit("Hello!");

// thread2 receives from thread1 with

msg = (String) exchanger.receive();

interface Mailbox {

 void deposit(Object msg) throws InterruptedException;

 Object receive() throws InterruptedException;

}

class QueuedMailbox implements Mailbox {

 private List<Object> queue = new LinkedList<Object>();

 public synchronized void deposit(Object msg) {

 queue.add(msg);

 this.notifyAll(); // Wake any waiting receivers

 }

 public synchronized Object receive() throws InterruptedException {

 while (queue.isEmpty()) wait();

 return queue.remove(0);

 }

}

af://n27

Where each Player is a thread that looks like this:

Other Ways

Previous example can be done in other ways, but the mechanism is very flexible. Suppose we
want to think during the opponent's move:

receiveIfPossible (written receive(0) in our actual package) doesn’t wait; returns null if no
message yet, perhaps like this:

Coroutines

while (! gameOver()) {

 if (myMove())

 outBox.deposit(computeMyMove(lastMove));

 else

 lastMove = inBox.receive();

}

while (!gameOver()) {

 if (myMove())

 outBox.deposit(computeMyMove(lastMove));

 else {

 do {

 thinkAheadALittle();

 lastMove = inBox.receiveIfPossible();

 } while (lastMove == null);

}

public synchronized Object receiveIfPossible()

throws InterruptedException {

 if (queue.isEmpty())

 return null;

 return queue.remove(0);

}

af://n35
af://n40

A coroutine is a kind of synchronous thread that explicit hands off control to other coroutines so
that only one executes at a time, like Python generators. We can get a similar effect with threads
and mailboxes:

Here is a recursive, in-order tree iterator:

Use in GUIs

Java's runtime library uses a special thread that does nothing but wait for events. You can
designate an object of your choice as a listener; which means that Java’s event thread calls a
method of that object whenever an event occurs.

As a result, your program can continue to do work while the GUI continues to respond to buttons,
menus, etc. Another special thread does all the drawing. You don't even have to be aware when
this takes place; just ask the thread to wake up whenever we change something.

Here are some highlights:

class TreeIterator extends Thread {

 Tree root; Mailbox r;

 TreeIterator(Tree T, Mailbox r) {

 this.root = T; this.dest = r;

 }

 public void run() {

 traverse(root);

 r.deposit(End marker);

 }

 void traverse(Tree t) {

 if (t == null) return;

 traverse(t.left);

 r.deposit(t.label);

 traverse(t.right);

 }

}

void treeProcessor(Tree T) {

 Mailbox m = new QueuedMailbox();

 new TreeIterator(T, m).start();

 while (true) {

 Object x = m.receive();

 if (x is end marker)

 { break; }

 do something with x;

 }

}

/** A widget that draws multi-colored lines indicated by mouse. */

class Lines extends JComponent implements MouseListener {

 private List<Point> lines = new ArrayList<Point>();

 Lines() { // Main thread calls this to create one

 setPreferredSize(new Dimension(400, 400));

 addMouseListener(this);

 }

af://n44

Interrupts

An interrupt is an event that disrupts the normal flow of control of a program.

In many systems, interrupts can be totally asynchronous, occurring at arbitrary points in a
program, the Java developers considered this unwise; arranged that interrupts would occur only
at controlled points.

In Java programs, one thread can interrupt another to inform it that something unusual needs
attention:

But otherThread does not receive the interrupt until it waits: methods wait , sleep (wait for a
period of time), join (wait for thread to terminate), and mailbox deposit and receive .
• Interrupt causes these methods to throw InterruptedException ,
so typical use is like this:

Remote Mailboxes

An RMI, Remoted Method Interface, allows one program to refer to objects in another program.
We use it to allow mailboxes in one program to be received from or deposited into another.

To use this, you define an interface to the remote object:

On the machine that will contain the object:

 public synchronized void paintComponent(Graphics g) { // Paint thread

 g.setColor(Color.white); g.fillRect(0, 0, 400, 400);

 int x, y; x = y = 200;

 Color c = Color.black;

 for (Point p : lines) {

 g.setColor(c); c = chooseNextColor(c);

 g.drawLine(x, y, p.x, p.y); x = p.x; y = p.y;

 }

 }

 public synchronized void mouseClicked(MouseEvent e) // Event thread

 { lines.add(new Point(e.getX(), e.getY())); repaint(); }

 ...

}

otherThread.interrupt();

try {

 msg = inBox.receive();

} catch (InterruptedException e)

 { HandleEmergency(); }

import java.rmi.*;

interface Mailbox extends Remote {

 void deposit(Object msg) throws InterruptedException, RemoteException;

 Object receive() throws InterruptedException, RemoteException;

 ...

}

af://n49
af://n56

Because Mailbox is an interface, it hides the fact that Machine 2 doesn't have direct access to it.
Requests for method calls are relayed by I/O to the machine with the actual Mailbox . Any
argument or return type is OK if it also implements Remote or can be serialized -- turned into a
stream of bytes and back, as can primitive types and String .

Because I/O is involved, expect failures, hence every method can throw RemoteException , a
subtype of IOException .

Scope and Lifetime

The scope of a declaration is the portion of program text to which it applies (is visible). It need not
be contiguous, and in Java, it is static and independent of data.

Lifetime, or extent, of storage is the portion of a program execution during which it exists. It is
always contiguous and generally dynamic, depending on data.

Below are the classes of extent:

Static: entire duration of the program
Local or automatic: duration of call or block execution (local variable)
Dynamic: from time of allocation statement (new) to deallocation, if any.

Explicit vs Automatic Freeing

Java has no explicit means to free dynamic storage. However, when no expression in any thread
can possibly be influenced by or change another object, it might as well not exist:

At this point, Java runtime, like Scheme’s, recycles the object c pointed to: garbage collection.

Allocation

class QueuedMailbox ... implements Mailbox {

 Same implementation as before, roughly

}

IntList wasteful() {

 IntList c = new IntList(3, new IntList(4, null));

 return c.tail;

 // variable c now deallocated, so no way to get to first cell

}

af://n65
af://n76
af://n80

Java pointers are represented as integer addresses, and corresponds to the machine's own
practice. In Java, you cannot convert integers to pointers, or vice versa. But crucial parts of the
Java runtime are implemented in C, or sometimes in machine code, where you can do so. Here's a
crude allocator in C:

Example of Storage Layout in Unix

The OS gives way to turn chunks of unallocated region into heap, and it happens automatically
for stack. This is the system that gives you tracebacks on error messages (trace of which lines in
your code cause errors).

Explicit Deallocation

In Java, garbage collection is automatic, while C/C++ normally require explicit deallocation,
because of:

Lack of run-time information about what is array
Possibility of converting pointers to integers.
Lack of run-time information about unions:

char store[STORAGE SIZE]; // Allocated array

size t remainder = STORAGE SIZE;

/** A pointer to a block of at least N bytes of storage */

void* simpleAlloc(size t n) { // void*: pointer to anything

 if (n > remainder) ERROR();

 remainder = (remainder - n) & ~0x7; // Make multiple of 8

 return (void*) (store + remainder);

}

af://n83
af://n86

Java avoids all three problems; automatic collection possible. Explicit freeing can be somewhat
faster, but rather error-prone to both memory corruption and memory leaks.

Free Lists

Free lists are a kind of data structure that one can use to keep track of memory you have freed
and is available for allocation. The gray areas are unallocated (can be used), and the white areas
are allocated. The free list enables us to ask it for the unallocated parts of memory that we can
use.

union Various {

 int Int;

 char* Pntr;

 double Double;

} X; // X is either an int, char*, or double

af://n97

	CS61B Lecture 37
	Threads
	Why do we use threads?
	Multi-thread Mechanics
	Avoiding Interference
	Communicating Data
	Primitive Java Facilities
	Other Ways
	Coroutines
	Use in GUIs
	Interrupts

	Remote Mailboxes
	Scope and Lifetime
	Explicit vs Automatic Freeing
	Allocation
	Example of Storage Layout in Unix
	Explicit Deallocation
	Free Lists

