
 V1 V2

Without
Delta
Compression

My eyes are fully open to my
awful situation. I shall go at
once to Roderick and make
him an oration. I shall tell
him I’ve recovered my
forgotten moral senses,

My eyes are fully open to my awful
situation. I shall go at once to Roderick
and make him an oration. I shall tell him
I’ve recovered my forgotten moral
senses, and don’t give twopence
halfpenney for any consequences.

With Delta
Compression

[Fetch 1st 6 lines from V2]

My eyes are fully open to my awful
situation. I shall go at once to Roderick
and make him an oration. I shall tell him
I’ve recovered my forgotten moral
senses, and don’t give twopence
halfpenney for any consequences.

CS61B Lecture 39
Wednesday, April 29, 2020

Compression

Git creates a new object in the repo each time a changed file or directory is committed, and
things can get crowded as a result. To save space, it compresses each object, and every now and
then, it packs objects together into a single file called a "packfile". Besides just sticking them
together, Git uses a technique called delta compression.

Delta Compression

Typically, there will be many versions of a file in a Git repo: the latest, and previous edits of it,
each in different commits. Git doesn't keep track explicitly of which file came from where, since
that's hard in general. However, it can guess that files of the same name, and roughly the same
size, in two commits are probably versions of the same file.

When this happens, Git stores one of them as a pointer to the other, plus a list of changes
specific to that version.

Unix Compression Programs

In any Unix system, you'll find two compression programs included: gzip and bzip . gzip is the
GNU version of ZIP.

$ gzip -k lect37.pic.in # The GNU version of ZIP

$ bzip2 -k lect37.pic.in # Another compression program

af://n0
af://n4
af://n8
af://n32

Compression and Decompression

A compression algorithm converts a stream of symbols into another smaller stream. It is called
lossless if the algorithm is invertible (no information is lost). A common symbol is the bit:

Here, we replaced the 8-bit ASCII bit sequences for digits with 4-bit (binary coded decimal). We
call these 4-bit sequences codewords, which we associate with the symbols in original,
uncompressed text, and we can do better than 50% compression with English text.

Morse Code and Prefix-Free Codes

$ ls -l lect37.pic*

Size

(bytes)

-rw-r--r-- 1 cs61b cs61b 31065 Apr 27 23:36 lect37.pic.in

-rw-r--r-- 1 cs61b cs61b 10026 Apr 27 23:36 lect37.pic.in.bz2 # Roughly 1/3 size

-rw-r--r-- 1 cs61b cs61b 10270 Apr 27 23:36 lect37.pic.in.gz

$

$

$

$ gzip -k lect37.pdf

$ ls -l lect37.pdf*

-rw-r--r-- 1 cs61b cs61b 124665 Mar 30 13:46 lect37.pdf

-rw-r--r-- 1 cs61b cs61b 101125 Mar 30 13:46 lect37.pdf.gz # Roughly 81% size

$ gunzip < lect37.pic.in.gz > lect37.pic.in.ungzip # Uncompress

$ diff lect37.pic.in lect37.pic.in.ungzip

$ # No difference from original (lossless)

$

$

$

$ gzip < lect37.pic.in.gz > lect37.pic.in.gz.gz

$ ls -l lect37.pic*gz

-rw-r--r-- 1 cs61b cs61b 10270 Apr 27 23:36 lect37.pic.in.gz

-rw-r--r-- 1 cs61b cs61b 10293 Apr 28 00:16 lect37.pic.in.gz.gz # Compressing a

file twice does not decrease its size

af://n42
af://n53

Morse code needs pauses between codewords to prevent ambiguities. Otherwise,

could be DEATH, BABE or BATH.

The problem is, Morse code allows many codewords to be prefixes of other ones, so that it's
difficult to know when you've come to the end of one. The alternative is to devise prefix-free
codes, in which no codeword is a prefix of another. Thus, one always knows when a codeword
ends.

In these encodings, no bit string is a prefix of another one: there are no bit strings except space
that begin with a 1 in A, or a 111 in B.

"I ATE" is unambiguously:

0000011000100101 in Encoding A, or
110011110101000010 in Encoding B

What data structures might you use to encode or decode these bits? Appropriate answers for
encoding include HashMap s and arrays, while decoding should be done with Tries.

Shannon-Fano Coding

The idea is to adapt your coding to the frequency of symbols in your text, using shorter
sequences as symbols for frequent symbols, and longer ones for infrequent symbols, such that
for example, in the English language, a common letter such as "N" would have a short encoding,
while less common letters like "X" or "Q" would have longer ones, to reduce overall size.

To do so, we would first have to count frequencies of all characters in the text to be compressed,
break grouped characters into two groups of roughly equal frequency. Encode the left group with
leading 0, right group with leading 1, and repeat until all groups are size 1.

...

Huffman Coding

af://n87
af://n103

We'll say an encoding of symbols to codewrods that are bitstrings is optimal for a particular text if
it encodes the text if it encodes the text in the fewest bits. Shannon-Fano coding is good, but not
optimal, and the optimal solution was found by an MIT graduate student, David Huffman, in a
class taught by Fano. The students were given the choice of taking the final, or doing a term
paper finding the encoding and proving its optimality. Fano assigned a problem he hadn't been
able to solve, but Huffman found it and the result is called Huffman coding.

We put each symbol in a node labeled with the symbol's relative frequency. Repeat the following
until there is just one node:

Combine the two nodes with smallest frequencies as children of a new single node whose
frequency is the sum of those two single nodes being combined. Let the edge to the left
child be labeled '0', and the right as '1'.

The resulting tree shows the encoding for each symbol: concatenate the edge labels on the path
from the root to the symnbol.

For this case, Shannon-Fano coding takes a weighted average of 2.31 bits per symbol, while
Huffman coding take 2.3.

LZW Coding

To get even better compression, we must encode multiple symbols per code word, allowing us to
code string such as

bbb

aba

abcdabcdeabcdefabcdefgabcdefghabcdefghiabcd

af://n122

in a space that can be less than 43 times the weighted average symbol length.

In LZW coding, we create new codewords as we go along, each corresponding to substrings of the
text. We start with a trivial mapping of codewords to single symbols, and after outputting a
codeword that matches the longest possible prefix, X, of the remaining input, add a new
codeword Y that maps to the substring X followed by the next input symbol.

The string B = aababcabcdabcdeabcdefabcdefgabcdefgh is encoded as C(B) =
0x616162816383648565876689678b68 , from 200 bits to 120 bits, with the following table:

Here's a question to think about: how might we represent this table to allow easily finding the
longest prefix at each step?

Decompression involves checking against the known list of codes, then manually deducing what
a particular sequence might represent:

This table will almost always contain the mapping we need, but there are cases where it doesn't.
Consider the string B = cdcdcdc , and after encoding it, we end up with C(B) = 0x63648082 .
Following the above procedure results in this table:

The problem is that we could look ahead while coding, but can only look behind while decoding.
So we must try to figure out what 0x82 is going to be by looking back.

Let's say 0x82 is some sequence Z to be figured out. We previously decoded 0x80 = cd , and
now we have 0x82 = Z , so we will add cdZ_0 to the table as 0x82 .

So Z starts with 0x80 and therefore Z_0 must be c ! This means 0x82 is cdc .

The LZW algorithm is named for its inventors: Lempel, Ziv and Welch. It was once widely used,
but patent issues made it rather unpopular. Those patents expired in 2003 and 2004, and it is
now found in .gif files, some PDF files, the BSD Unix compress utility, and elsewhere. There are
numerous other, better algorithms, such as those uses in gzip and bzip2 .

The presentation here is considerably simplified:

We used fixed-length (8-bit) codewords, but the full algorithm produces variable-length
codewords using (!) Huffman coding (compressing the compression).
The full algorithm clears the table from time to time to get rid of little-used codewords.

Conclusion

Compressing a compressed text doesn’t result in much compression. Why must it be impossible
to keep compressing a text? Otherwise you’d be able to compress any number of different
messages to 1 bit!

A program that takes no input and produces an output can be thought of as an encoding of that
output, which leads to the following question: Given a bitstream, what is the length of the
shortest program that can produce it? For any specific bitstream, there is a specific answer! This
is a deep concept, known as Kolmogorov Complexity.

It's actually weird that one can compress much at all. In a 1000-character ASCII text (8000 bits),
and suppose we compress it by 50%. There are 2^8000 distinct messages in 8000 bits, but only
2^4000 possible messages in 4000 bits.

That is, no matter what one's scheme, we can only encode 1 in 2^4000 of the possible 8000-bit
messages by 50%! Yet, we do this all the time. The reason is that our texts have a great deal of
redundancy and repetition, called low information entropy. Texts with high entropy, such as
random bits, previously compressed texts, or encrypted texts, are nearly imcompressible.

Git

af://n174
af://n198

Git actually uses a different scheme from LZW for compression: a combination of LZ77 and
Huffman coding. LZ77 is kind of like delta compression, but within the same text. For example:

One Mississippi, two Mississippi is compressed into something like

One Mississippi, two <11,7> , where the <11,7> is intended to mean “the next 11 characters
come from the text that ends 7 characters before this point.”

We add new symbols to the alphabet to represent these (length, distance) inclusions. When done,
Huffman encode the result.

Lossy Compression

For some applications, like compressing video and audio streams, it really isn’t necessary to be
able to reproduce the exact stream. • We can therefore get more compression by throwing away
some information. The reason is that there is a limit to what human senses respond to. For
example, we don’t hear high frequencies, or see tiny color variations, and thus, formats like JPEG,
MP3, or MP4 use lossy compression and reconstruct output that is (hopefully) imperceptibly
different from the original at large savings in size and bandwidth. You can see more of this in EE
120 and other courses.

Summary

Lossless compression saves space (and bandwidth) by exploiting redundancy in data.

Huffman and Shannon-Fano coding represent individual symbols of the input with shorter
codewords.
LZW and similar codes represents multiple symbols with shorter codewords.
Both adapt their codewords to the text being compressed.

Lossy compression both uses redundancy and exploits the fact that certain consumers of
compressed data (like humans) can’t really use all the information that could be encoded.

af://n202
af://n206

	CS61B Lecture 39
	Compression
	Delta Compression
	Unix Compression Programs
	Compression and Decompression
	Morse Code and Prefix-Free Codes
	Shannon-Fano Coding
	Huffman Coding
	LZW Coding
	Conclusion
	Git
	Lossy Compression

	Summary

