CS61B Lecture 4

Wednesday, January 29, 2020

Announcements

e Handing in labs and homework: We'll be lenient about accepting late and homework and
labs for lab1, lab2 and hwO. Just get it done. Do not submit via email.

e Course staff will interpret the absence of a central repository for you, or a lack of a lab1
submission, as your intention to drop the course.

e HW?1 will be released tonight, and Project O will be released on Friday.

A Small Test of Understanding
In Java, the keyword final in a variable declaration means the variable's value may not be
changed after the variable is initialized.

Is the following class valid?

public class Issue {
private final IntList aList = new IntList(0, null)

public void modify(int, k) {
this.aList.head = k;

Why or why not?

Answer: Turns out this is valid. is valid. Although modify changes the head variable of the
object pointed to by aList, it does not modify the contents of aList itself (which is a
pointer).

Destructive Incrementing

In our previous version of incrList, the method we designed was non-destructive; that is to say
the IntList we passed in to the function is not changed, and instead returns a new IntList.

Let's now build a destructive method called dincrList . Destructive solutions may modify
objects in the original list to save time or space:

/** Destructively add N to L’s items. Recursive solution. */
static IntList dincrList(IntList P, int n) {
if (P == null) {
return null;
} else {
P.head += n;
P.tail = dincrList(P.tail, n);
return P;

af://n0
af://n4
af://n20

/** Destructively add N to L’s items. Iterative solution. */
static IntList dincrList(IntList L, int n) {
// ’'for’ can do more than count!
for (IntList p=1L; p != null; p = p.tail)
p.head += n;
return L;

List Deletion

Non-Destructive
Recursive

If Lis the list [2,1,2,9,2], we want removeAll1(L,2) to bethenew [1,9].

/** The 1list resulting from removing all instances of X from L
non-destructively. */
static IntList removeAll(IntList L, int X){
if (L == nul1){
return null;
} else if (L.head == x){
return removeAlT;
} else {
return new IntList(L.head,, removeAll(L.tail, x));

Iterative

Same as before, but using iteration (front-to-back) rather than recursion.

/** The 1ist resulting from removing all instances
of X from L non-destructively. */
static IntList removeAll(IntList L, int x) {
IntList result, Tlast;
result = null;
last = result;
for (; L !'=null; L =1L.tail) {
if (x == L.head) {
continue; // equivalent to pass in Python
} else if (last == null) {
result = new IntList(L.head, null);
last = result;
} else
last.tail = new IntList(L.head, null);
last = last.tail;
3
return result;

3

Multiple Assignment in Java
Instead of writing:

af://n24
af://n25
af://n26
af://n29

last.tail = ...;
last = last.tail;

You can also write:
last = last.tail = ...;

These two pieces of code are fundamentally identical: it tells Java to assign some value to
the pointer at Tast.tail, then treats the assignment statement as an expression whose
value is assigned the pointer at Tast.

Destructive

Same as before, but we will modify the original list that is passed in:

/** The 1ist resulting from removing all instances of X from L.
* The original 1list may be destroyed. Recursive solution */
static IntList dremoveAll(IntList L, int x) {
if (L == null) {
return
} else if (L.head == x) {
return dremoveAll(L.tail, x);

} else {
L.tail = dremoveAll(L.tail, Xx);
return L;

}

/** The 1ist resulting from removing all Xs from L
* destructively. Iterative solution */
static IntList dremoveAll (IntList L, int x) {
IntList result, Tast;
result = last = null;
while (L != null) {
IntList next = L.tail;
if (x != L.head) {
if (last == null) {
result = last = L;
} else {
last = last.tail = L;
I
L.tail = null;
b
L = next;
3

return result;

}

af://n38

	CS61B Lecture 4
	Announcements
	Destructive Incrementing
	List Deletion
	Non-Destructive
	Recursive
	Iterative

	Destructive

