
CS61B Lecture 4
Wednesday, January 29, 2020

Announcements

Handing in labs and homework: We'll be lenient about accepting late and homework and
labs for lab1, lab2 and hw0. Just get it done. Do not submit via email.
Course staff will interpret the absence of a central repository for you, or a lack of a lab1
submission, as your intention to drop the course.
HW1 will be released tonight, and Project 0 will be released on Friday.

A Small Test of Understanding
In Java, the keyword final in a variable declaration means the variable's value may not be
changed after the variable is initialized.

Is the following class valid?

Why or why not?

Answer: Turns out this is valid. is valid. Although modify changes the head variable of the
object pointed to by aList , it does not modify the contents of aList itself (which is a
pointer).

Destructive Incrementing

In our previous version of incrList , the method we designed was non-destructive; that is to say
the IntList we passed in to the function is not changed, and instead returns a new IntList .

Let's now build a destructive method called dincrList . Destructive solutions may modify
objects in the original list to save time or space:

 public class Issue {

 private final IntList aList = new IntList(0, null)

 public void modify(int, k) {

 this.aList.head = k;

 }

 }

/** Destructively add N to L’s items. Recursive solution. */

static IntList dincrList(IntList P, int n) {

 if (P == null) {

 return null;

 } else {

 P.head += n;

 P.tail = dincrList(P.tail, n);

 return P;

 }

}

af://n0
af://n4
af://n20

List Deletion

Non-Destructive

Recursive

If L is the list [2,1,2,9,2] , we want removeAll(L,2) to be the new [1,9] .

Iterative

Same as before, but using iteration (front-to-back) rather than recursion.

Multiple Assignment in Java
Instead of writing:

/** Destructively add N to L’s items. Iterative solution. */

static IntList dincrList(IntList L, int n) {

 // ’for’ can do more than count!

 for (IntList p = L; p != null; p = p.tail)

 p.head += n;

 return L;

 }

}

/** The list resulting from removing all instances of X from L

 * non-destructively. */

static IntList removeAll(IntList L, int X){

 if (L == null){

 return null;

 } else if (L.head == x){

 return removeAll;

 } else {

 return new IntList(L.head,, removeAll(L.tail, x));

 }

}

/** The list resulting from removing all instances

 * of X from L non-destructively. */

static IntList removeAll(IntList L, int x) {

IntList result, last;

result = null;

last = result;

for (; L != null; L = L.tail) {

 if (x == L.head) {

 continue; // equivalent to pass in Python

 } else if (last == null) {

 result = new IntList(L.head, null);

 last = result;

 } else

 last.tail = new IntList(L.head, null);

 last = last.tail;

 }

return result;

}

af://n24
af://n25
af://n26
af://n29

You can also write:

These two pieces of code are fundamentally identical: it tells Java to assign some value to
the pointer at last.tail , then treats the assignment statement as an expression whose
value is assigned the pointer at last .

Destructive

Same as before, but we will modify the original list that is passed in:

last.tail = ...;

last = last.tail;

 last = last.tail = ...;

/** The list resulting from removing all instances of X from L.

 * The original list may be destroyed. Recursive solution */

static IntList dremoveAll(IntList L, int x) {

 if (L == null) {

 return

 } else if (L.head == x) {

 return dremoveAll(L.tail, x);

 } else {

 L.tail = dremoveAll(L.tail, x);

 return L;

 }

}

/** The list resulting from removing all Xs from L

 * destructively. Iterative solution */

static IntList dremoveAll (IntList L, int x) {

 IntList result, last;

 result = last = null;

while (L != null) {

 IntList next = L.tail;

 if (x != L.head) {

 if (last == null) {

 result = last = L;

 } else {

 last = last.tail = L;

 }

 L.tail = null;

 }

 L = next;

 }

return result;

}

af://n38

	CS61B Lecture 4
	Announcements
	Destructive Incrementing
	List Deletion
	Non-Destructive
	Recursive
	Iterative

	Destructive

