
CS61B Lecture 5
Friday, January 31, 2020

How to Write a Loop

Try to give a description of how things look on any arbitrary iteration of the loop.

This description is known as a loop invariant, because it is always true at the start of each
iteration.

The loop body then must:

Start from any situation consistent with the invariant and condition;

Make progress in such a way as to make the invariant true again.

So if our loop gets the desired answer whenever invariant is true and condition false, our job
is done.

Another way to see this is to consider an equivalent recursive procedure:

Here, the invariant is the precondition of the function loop.

The loop maintains the invariant while making the condition false.

Idea is to arrange that our actual goal is implied by this post-condition.

Arrays

An array is a structured container whose components are length and a sequence of simple
containers of the same type, numbered from 0. Length field is usually implicit in diagrams.

They are anonymous, like other structured containers. Thus, they are always referred to with
pointers.

// Invariant must be true here

while (condition) { // condition must not have side-effects.

 // (Invariant and condition are not necessarily true here.)

 loop body

 // Invariant must again be true here

}

// Invariant true and condition false.

/** Assuming Invariant, produce a situation where Inveriant

 * is true and condition is false. */

 void loop() { // Invariant assumed true here.

 if (condition) { // Invariant and condition true here.

 loop body

 // Invariant must be true here.

 loop()

 // Invariant true here and condition false.

 } else { /* condition false here. */ }

}

af://n0
af://n4
af://n29

You can get the length of an array A with the code A.length , or refer to specific elements with
A[i] , where i is an integer expression. Arrays are zero-indexed.

Example

Charting It Out

The following is a very basic example of instantiating arrays and what happens in the
environment:

int[] x, y, z;

String[] a;

x = new int[3];

y = x;

a = new String[3];

x[1] = 2;

y[1] = 3;

a[1] = "Hello";

int[] q;

q = new int[] { 1, 2, 3 };

// Short form for declarations:

int[] r = { 7, 8, 9 };

af://n33
af://n34

Accumulate Values

Problem: Sum up the elements of an array.

Hardcore Code
For the hardcore coders, you could also have written:

 for (i=0, N=0; i < A.length; N += A[i], i+= 1)

Array Insert

Problem: Want a call insert(A, 2, "gnu") to convert (destructively):

static int sum(int[] A){

 int N;

 N = 0;

 for (int i = 0; i < A.length; i++) {

 N += A[i];

 }

 return N;

}

af://n38
af://n44

Java shortcut
Instead of writing System.arraycopy , you can avoid this with a shortcut:

This means "define the simple name arraycopy to be the equivalent of
java.lang.System.arraycopy in the source file."

You could also do the same for out.println . Or, for example, you are writing a calculator
program and need Math functions frequently. You can type:

Array Grow

Problem: Suppose that we want to change the description above, so
that A = insert2 (A, 2, "gnu") does not shove “skunk” off the end,
but instead “grows” the array.

Array Merge

Given two sorted arrays of ints, A and B, produce their merge: a sorted array containing all items
from A and B.

static void insert (String[] arr, int k, String x) {

 for (int i = arr.length-1; i > k; i -= 1) // Why backwards? {

 arr[i] = arr[i-1];

 /* Alternative to this loop:

 System.arraycopy(arr, k, arr, k+1, arr.length-k-1); */

 arr[k] = x;

}

 import static java.lang.System.arraycopy;

 import static java.lang.Math.*;

/** Return array, r, where r.length = ARR.length+1; r[0..K-1]

 * the same as ARR[0..K-1], r[k] = x, r[K+1..] same as ARR[K..]. */

static String[] insert2(String[] arr, int k, String x) {

 String[] result = new String[arr.length + 1];

 arraycopy(arr, 0, result, 0, k);

 arraycopy(arr, k, result, k+1, arr.length-k);

 result[k] = x;

 return result;

}

af://n54
af://n57

As a strategy, it is useful to solve this recursively by generalizing the original function to allow
merging portions of the arrays.

Now that we've written the merge functionality, we need to write the general function:

What's wrong with this code?
It's rather slow! It's both slow and inefficient (it takes

 time). So we need to fix something...

Tail-Recursive Merge

/** Assuming A and B are sorted, returns their merge. */

public static int[] merge(int[] A, int[] B) {

 return mergeTo(A, 0, B, 0);

}

/** The merge of A[L0..] and B[L1..] assuming A and B sorted. */

static int[] mergeTo(int[] A, int L0, int[] B, int L1) {

 int N = A.length - L0 + B.length - L1; int[] C = new int[N];

 if (L0 >= A.length) {

 arraycopy(B, L1, C, 0, N);

 } else if {

 (L1 >= B.length) arraycopy(A, L0, C, 0, N);

 } else if (A[L0] <= B[L1]) {

 C[0] = A[L0]; arraycopy(mergeTo(A, L0+1, B, L1), 0, C, 1, N-1);

 } else {

 C[0] = B[L1]; arraycopy(mergeTo(A, L0, B, L1+1), 0, C, 1, N-1);

 }

 return C;

}

public static int[] merge(int[] A, int[] B) {

 return mergeTo(A, 0, B, 0, new int[A.length+B.length], 0);

}

/** Merge A[L0..] and B[L1..] into C[K..], assuming A and B sorted. */

static int[] mergeTo(int[] A, int L0, int[] B, int L1, int[] C, int

k){

af://n66

Multidimensional Arrays

If we wanted to represent a two or three-dimensional array in Java? The easiest way is to build an
array of arrays.

Because every element of an array is independent, there is no single "width" property. You could
make every array a different length.

 if (L0 >= A.length && L1 >= B.length) {

 return C;

 } else if (L1 >= B.length || (L0 < A.length && A[L0] <= B[L1])) {

 C[k] = A[L0];

 return mergeTo(A, L0 + 1, B, L1, C, k + 1);

 } else {

 C[k] = B[L1];

 return mergeTo(A, L0, B, L1 + 1, C, k + 1);

 }

}

int[][] A = new int[3][];

A[0] = new int[] {2, 3, 4, 5};

A[1] = new int[] {4, 9, 16, 25};

A[2] = new int[] {8, 27, 64, 125};

af://n68

	CS61B Lecture 5
	How to Write a Loop
	Arrays
	Example
	Charting It Out
	Accumulate Values
	Array Insert
	Array Grow
	Array Merge
	Tail-Recursive Merge

	Multidimensional Arrays

