
CS61B Lecture 6
Monday, February 3, 2020

Sorting

Here's a common, or at least, plausible problem: we want to print out the command-line
arguments in lexicographic order.

And here's the plan:

How do we know if our code works?

Unit testing refers to the testing of individual units (methods, classes) within a program, rather
than the whole program. In this class, we mainly use the JUnit tool for unit testing. An example is
AGTestYear.java in Lab 1.

Integration testing refers to the testing of entire (integrated) set of modules — the whole
program. In this course, we’ll look at various ways to run the program against prepared inputs
and checking the output.

Regression testing refers to testing with the specific goal of checking that fixes, enhancements, or
other changes have not introduced faults (regressions).

Test-Driven Development

Idea: write tests first.

% java sort the quick brown fox

brown fox quick the

public class sort {

 /** Sort and print WORDS lexicographically */

 public static void main(String[] words){

 sort(words,0,words.length-1);

 print(words);

 }

 /** Sort items A[L...U], with all the others unchanged */

 static void sort(String[] A, int L, int U){

 // Do something

 }

 /** Print the items of the array on one line */

 static void print(String[] A){

 // Do something

 }

}

af://n0
af://n3
af://n8
af://n12

Implement unit at a time, run tests, fix and refactor until it works. We’re not really going to push it
in this course, but it is useful and has quite a following.

Testing sort program

This is pretty easy: just give a bunch of arrays to sort and then
make sure they each get sorted properly. We just have to make sure we cover the necessary
cases:

Corner cases. For example, empty array, one-element, all elements the same.
Representative “middle” cases. For example, elements reversed, elements in order, one
pair of elements reversed, ...

Simple JUnit

The JUnit package provides some handy tools for unit testing. The Java annotation @Test on a
method tells the JUnit machinery to call that method. (An annotation in Java, like a decorator in
Python, provides information about a method, class, etc., that can be examined within Java itself.)
A collection of methods with names beginning with assert then allow your test cases to check
conditions and report failures.

Our sort method

Below is a very quick overview of what our sort method will look like:

And here's the completed program:

And here's an iterative version:

Now that this is done, we need to write the indexOfLargest method.

/** Sort items A[L..U], with all others unchanged. */

static void sort(String[] A, int L, int U) {

 if (L < U) {

 int k = /*(Index s.t. A[k] is largest in A[L],...,A[U])*/;

 /*{ swap A[k] with A[U] }*/;

 /*{ Sort items L to U-1 of A. }*/;

 }

}

/** Sort items A[L..U], with all others unchanged. */

static void sort(String[] A, int L, int U) {

 if (L < U) {

 int k = indexOfLargest(A, L, U);

 String tmp = A[k]; A[k] = A[U]; A[U] = tmp;

 sort(A, L, U-1); // Sort items L to U-1 of A

 }

}

while (L < U) {

 int k = indexOfLargest(A, L, U);

 String tmp = A[k]; A[k] = A[U]; A[U] = tmp;

 U -= 1;

}

af://n15
af://n22
af://n24

And here is an iterative version, which is not tail-recursive.

Printing

And finally, we need to provide a special method that can print arrays neatly.

Java also provides a simple, specialized syntax for looping through an entire array:

/** Index k, I0<=k<=I1, such that V[k] is largest element among

 * V[I0], ... V[I1]. Requires I0<=I1. */

static int indexOfLargest(String[] V, int i0, int i1) {

 if (i0 >= i1) {

 return i1;

 } else {

 int k = indexOfLargest(V, i0 + 1, i1);

 return (V[i0].compareTo(V[k]) > 0) ? i0 : k;

 // if (V[i0].compareTo(V[k]) > 0) return i0

 // else return k;

 }

}

int i, k;

k = i1 ; // Deepest iteration

for (i = i1 - 1; i >= i0; i -= 1) {

 k = (V[i].compareTo(V[k]) > 0) ? i : k ;

}

return k

/** Print A on one line, separated by blanks. */

static void print(String[] A) {

 for (int i = 0; i < A.length; i += 1) {

 System.out.print(A[i] + " ");

 System.out.println();

 }

}

for (String s : A) {

 System.out.print(s + " ");

}

af://n35

	CS61B Lecture 6
	Sorting
	How do we know if our code works?
	Test-Driven Development
	Testing sort program
	Simple JUnit

	Our sort method
	Printing

