
CS61B Lecture 7
Wednesday, February 5, 2020

Object-oriented programming

Back in the 1950s, computer programs got larger and larger, and became more difficult to read,
handle and update. Computer scientists got into discussions as how to best handle this. One
rather unhelpful suggestion was to write smaller programs.

Object-oriented programming was developed in the late 1950s and early 1960s as a way to make
it easier to manage large programs, and have programs more closely simulate the real-life
objects they represent.

Object-based programs are organized around the types of objects that are used to represent
data; methods are grouped by type of object. Function-based programs are organized primarily
around the functions (methods, etc.) that do things. Data structures (objects) are considered
separate.

To read more about object-oriented programming, see my CS61A Notes.

In general, we prefer a purely procedural interface, where the functions (methods) do everything
—no outside access to the internal representation (i.e., instance variables). That way,
implementor of a class and its methods has complete control over behavior of instances.

In Java, the preferred way to write the “operations of a type” is as instance methods.

A comparison against Python

Here is the Account class from CS61A (in the notes above!):

class Account:

 balance = 0

 def __init__ (self, balance0):

 self.balance = balance0

 def deposit(self, amount):

 self.balance += amount

 return self.balance

 def withdraw(self, amount):

af://n0
af://n3
https://winstonpurnomo.github.io/homepage/61A%20Lec%2017.pdf
af://n11

And here is Java:

What happens if we change the declaration of balance to static?
That means balance becomes a variable that is shared among all instances of Account !
Static variables are what we know in Python as class variables.

Getter Methods

Slight problem with Java version of Account: anyone can assign to the balance field. This reduces
the control that the implementer of Account has over possible values of the balance. You're not
supposed to be able to change your own balance like that!

Solution: allow public access only through methods:

 if self.balance < amount:

 raise ValueError("Insufficient funds")

 else:

 self.balance -= amount

 return self.balance

myAccount = Account(1000)

print(myAccount.balance)

myAccount.deposit(100)

myAccount.withdraw(500)

public class Account {

 public int balance;

 public Account(int balance0) {

 this.balance = balance0;

 }

 public int deposit(int amount) {

 balance += amount; return balance;

 }

 public int withdraw(int amount) {

 if (balance < amount) {

 throw new IllegalStateException("Insufficient funds");

 } else {

 balance -= amount;

 }

 return balance;

 }

}

Account myAccount = new Account(1000);

print(myAccount.balance)

myAccount.deposit(100);

myAccount.withdraw(500);

af://n18

Now Account.balance = 1000000 is an error outside the Account class. (In 61B, we use the
convention of putting _ at the start of private instance variables to distinguish them from local
variables and non-private variables. Could actually use balance for both the method and the
variable, but please don’t.)

Instance and Static Methods

An instance method can be taught of as a fancy kind of static method, featuring hidden
arguments:

can be thought of as writing this piece of code:

Although we should note that the above code is not legal Java, as you are not allowed to declare
this as an instance variable.

Calling Instance and Static Methods

Calling such an instance method:

is equivalent to this call on our fictional static method:

Inside a real instance method, you can leave off the leading this. on field access as long as your
call is not ambiguous, unlike Python, which will throw up an error if you try to call an instance
method without self.

Real static methods don't have the invisible this parameter, which means we can't refer directly
to instance variables inside of them:

public class Account {

 private int balance;

 ...

 public int balance() {

 return balance;

 }

...

}

int deposit(int amount) {

 _balance += amount;

 _funds += amount;

 return balance;

}

static int deposit (final Account this, int amount) {

 this._balance += amount;

 this._funds += amount;

 return this._balance;

}

myAccount.deposit(100);

Account.deposit(myAccount,100); // which also is not valid Java

af://n23
af://n64

The call to _balance is equivalent to this._balance , but this static method has no sense of
what this is. Java will throw up some error that will say "trying to access instance variable from
a static context".

Constructors

To completely control the objects of some class, you must be able to set their initial contents. A
constructor is a special kind of instance method that is called by the new operator right after it
creates a new object:

All classes have constructors. If you do not explicitly define one, Java will give your class the
default constructor:

You can define multiple overloaded constructors, and they can use each other (although the
syntax is a bit odd):

Instance variable initializations are moved inside constructors that don't start with this(...) :

public static int badBalance(Account A) {

 int x = A._balance; // This is OK

 return _balance; // This is nonsense

}

L = new IntList(1, null);

tmp = pointer to [0,\];

tmp.IntList(1, null);

L = tmp;

public class Foo {

 public Foo();

}

public class IntList {

 public IntList(int head, IntList tail) {

 this.head = head; this.tail = tail;

 }

 public IntList(int head){

 this(head, null); // This calls the first constructor

 }

}

af://n68

Summary of Java vs Python

So this is a class, its constructor, and some instance and static variables and methods:

class Foo:

 """Here is some Python code that creates a class called Foo."""

 def __init__(self,...):

 ...

 def f(self,...):

 ...

 y = 21

 @staticmethod

 def g(...):

 ...

aFoo.f(...)

aFoo.y

Foo(...)

self

/** Here is some Java code that creates a class called Foo. */

class Foo {

 Foo(...) {

 ...

 }

 int f(...) {

 ...

 }

 static int y = 21;

 static void g(...) {

 ...

 }

}

aFoo.f(...);

aFoo.y;

new Foo(...);

this;

af://n91

As you can see, while coding in these languages feels different, they really are quite similar under
the hood.

	CS61B Lecture 7
	Object-oriented programming
	A comparison against Python
	Getter Methods

	Instance and Static Methods
	Calling Instance and Static Methods

	Constructors
	Summary of Java vs Python

