
CS61B Lecture 8
Friday, February 9th, 2020

Object-Oriented Mechanisms

The general idea of object-oriented programming is to write software that operates on many
kinds of data.

Overloading

So far, we have designed functions that only take in and return a specific kind of data. In Python
and Scheme, a single function can take an argument of any type, then test the type if needed. A
partial solution for this is a method called overloading -- multiple method definitions with the
same name and different numbers of or types of arguments.

For example, the function System.out.println has type java.io.PrintStream , which defines:

Each of these is a different function, and the compiler decides which to call on the basis of the
types of argument.

Magic Arrays

How can we build arrays that can contain data of any type? In Python and Scheme, this was no
problem, but Java requires you to declare a type, e.g. int[] .

The short answer is that any reference value can be converted to the type java.lang.Object
and back, so we can use the generic reference type Object as the type it takes in.

To access these Object s' natural properties, we must convert them back to what they were:

Primitive and Reference Types

void println(); // Prints a new line

void println(String s); // Prints S

void println(boolean b); // Prints "true" or "false"

void println(char c); // Prints a single character

void println(int i); // Prints I in decimal

Object[] things = new Object[2];

things[0] = new IntList(3, null);

things[1] = "Stuff";

/** This is OK */

((IntList) things[0].head == 3);

((String) things[1].startsWith("St"));

/** This is not */

things[0].head == 3;

things[1].startsWith("St");

af://n0
af://n6
af://n10
af://n21

Primitive Type Wrapper

byte Byte

long Long

float Float

short Short

char Character

double Double

int Integer

boolean Boolean

See my notes for CSJ61B (Josh Hug's version of CS61B) to know more about Java's primitive
and reference types.

When we try to build a list containing primitive types, this presents a problem because they are
not readily convertible to Object . Java introduces a set of wrapper types, one for each primitive
type.

One creates new wrapper objects for any value in a process called boxing:

and vice-versa, called unboxing:

Autoboxing

Now this is very clumsy, so Java introduced a slightly more elegant solution to automate the
boxing process:

Dynamic vs. Static Types

Every value has a type -- its dynamic type.

Integer Three = new Integer(3);

Object ThreeObj = Three;

int three = Three.intValue();

Integer Three = 3;

int three = Three;

int six = Three + 3;

Integer[] someInts = {1,2,3};

for (int x : someInts) {

 System.out.println(x);

}

System.out.println(someInts[0]);

 // This prints Integer 1, not int 1; the println

 // for object is called instead of for int.

af://n91
af://n104

Every container, a variable, component or parameter, literal, function call and oeprator
expression (e.g. x+y) has a type -- its static type.

Therefore, every expression has a static type.

Type Hierarchies

A container with a static type T may only contain a certain value only if that value is a T -- that is,
if the dynamic type of the value is a subtype of T. Likewise, a function with return type T may
return only values that are subtypes of T .

All types are subtypes of themselves.

For reference types, reference types form a type hierarchy. Some are subtypes of others (parent
classes and child classes, as we called them in 61A). null is a subtype of all reference types, and
all reference types are subtypes of Object .

Here is the partial type hierarchy:

(Notice that String[] is a subtype of Object[] , which is a subtype of Object .)

af://n113

Java is defined in such a way so that any expression of static type T always yields a value that is a
T . Static types are known to the compiler, for example:

The compiler insists that in an assignment L = E , or function call X = f(E) , where:

the static type of E must be a subtype of L 's and X 's static type.

Coercions

The values of type short , for example, are a subset of those of int (short s are representable
as 16-bit integers, int s as 32-bit integers). However, short is not a subtype of int , because
they don't quite behave the same.

Instead, we can say that the values of type short can be coerced into a value of type int . The
compiler will silently coerce "smaller" integer types to larger ones, e.g. float to double , and
between primitive types and their wrapper types as we saw earlier.

The above code works because of coercion, which was added as a convenience for programmers.

Consequences of Compiler "Sanity Checks"

This is a conservative rule. The last line of the following code, which you might think is sensible,
is illegal:

The compiler has figured that not every Object is an array, and thus will not let you do this. You
must declare that x contains an array value: ((int[]) x)[i+1]) = 1 .

The static type of cast (T) E is T . If x isn't an array value, a runtime error will be returned.

Overriding and Extending

The notation so far is useful, but it's also clumsy. If I know for sure Object variable x contains a
String , why can't I just write x.startsWith("this") ? The reason is startsWith is only
defined on strings and not all Object s, and the compiler isn't sure it makes sense unless you
cast and tell it it's okay.

String x; // Static type of field

int f (Object s) { // Static type of call to f and parameter

 int y; // Static type of local variable

}

void f(someType L) { ... }

short x = 3002;

int y = x;

int[] A = new int[2];

Object x = A; // All references are Objects

A[i] = 0; // Static type of A is array

x[i+1] = 1; // But not of X: ERROR

af://n152
af://n168
af://n178

But if an operation were defined on all Object s, then you wouldn't need this clumsy casting. For
example, .toString() is defined an all Object s, which means you can always say
x.toString() as long as x is of a reference type.

The default .toString() function is not very useful; on an IntList , it would produce a string
like IntList@2f6684 . But for any subtype of Object , you may override the default definition.

Overriding a method

For example, if s is a String , s.toString() is the identity function. For any type you define,
you may supply your own definition, such as the following in IntList :

We can now use the function as follows:

which would print out [3,4] . Conveniently, the + operator on String s calls .toString when
asked to append an Object , and so does the %s formatter for printf .

With this trick, you can supply an output function for any type you define.

Extending a Class

To say that class B is a direct subtype of class A , or that B inherits from A in 61A terminology,
or that A is a direct superclass of B, we write:

By default, class... extends java.lang.Object . The subtype will inherit all the fields and
methods of its direct superclass, and passes them along to any of its subtypes.

In the subclass, you may override an instance method (but not a static method!) by providing a
new definition with the exact same signature (name, return type and argument types). A method
and all its overridings form a dynamic method set.

Conclusion: If f(...) is an instance method, then the call x.f(...) calls whatever overriding of
f applies to the dynamic type of x , regardless of the static type of x .

Example

Here's an example that will illustrate all of these concepts:

public String toString() {

 StringBuffer b = new StringBuffer();

 b.append("[");

 for (IntList L = this; L != null; L = L.tail) {

 b.append(" " + L.head);

 }

 b.append("]");

 return b.toString();

}

x = new IntList(3, new IntList (4, null));

System.out.println(x.toString());

class B extends A { ... }

class Worker {

af://n189
af://n215
af://n232

The lesson here is that instance methods select the appropriate method based entirely on the
dynamic type of the object, regardless of its static type. wDaniel 's static type is a Worker , but
the method called is for its dynamic type TA .

Fields and Static Methods

Fields hide inhierted fields of the same name, while static methods hide methods of the same
signature.

 void work() {

 collectPay();

 }

}

class Prof extends Worker {

 // inherits work()

}

class TA extends Worker {

 void work() {

 while (true) {

 doLab(); discuss(); officeHour();

 }

 }

}

Prof paul = new Prof();

TA daniel = new TA();

Worker wPaul = paul, wDaniel = daniel;

// paul.work() is functionally equivalent to wPaul.work(), and daniel.work() is

functionally equivalent to wDaniel.work()

class Parent {

 int x = 0;

 static int y = 1;

 static void f() {

 System.out.println("Ahem!");

 }

 static int f(int x) {

 return x+1;

 }

}

class Child extends Parent {

 String x = "no";

 static String y = "way";

 static void f() {

 System.out.println("I wanna!");

 }

}

Child tom = new Child();

Parent pTom = tom;

af://n338

Hiding causes confusion, however, so you should understand it, but never do it!

Conclusion

The mechanisms described here allow us to define a kind of generic method. A superclass can
define a set of operations (methods) that are common to many different classes. Subclasses can
then provide different implementations of these common methods, each specialized in some
way.

All subclasses will have at least the methods listed by the superclass. So when we write methods
that operate on the superclass, they will automatically work for all subclasses with no extra work.

/** Here are what the calls would do. They are in a fictional, live interpreter

mode of

 * Java for your convenience. */

>>> tom.x

no

>>> tom.y

way

>>> tom.f()

I wanna!

>>> tom.f(1)

2

>>> pTom.x

0

>>> pTom.y

1

>>> pTom.f()

Ahem!

>>> pTom.f(1)

2

af://n346

	CS61B Lecture 8
	Object-Oriented Mechanisms
	Overloading
	Magic Arrays
	Autoboxing

	Dynamic vs. Static Types
	Type Hierarchies
	Coercions
	Consequences of Compiler "Sanity Checks"

	Overriding and Extending
	Overriding a method
	Extending a Class
	Example
	Fields and Static Methods

	Conclusion

