
CS61B Lecture 9  
Monday, February 10, 2020

Abstract Classes  

Instance methods can be abstract. No body is given, but must be supplied in its subtype. One 
good use of this is specifying a pure interface to a family of types:

Now a Drawable  is a class that has at least the operatoons scale  and draw  on it. You can't 
create an instance of it, because it's abstract, and in this case, it would make no sense anyway, 
because it just has two methods that lack an implementation.

Methods on Drawable  

So what is the point of this anyway? We can't call new Drawable() , but we can write methods 
that operate on Drawable s in Drawable  in other classes:

How can this work? Well, regular classes can extend abstract classes to make them less abstract, 
overriding their abstract methods. We can define different kinds of Drawable s that are concrete, 
in that all methods have implementations, and one can use new  on them.

/** A drawable object. */

public abstract class Drawable {

    // "abstract class" = "can't say new Drawable"

    

    /** Expand THIS by a factor of XSIZE in the X

     *  direction, and YSIZE in the Y direction. */

     public abstract void scale(double xsize, double ysize);

     

     /** Draw THIS on the standard output. */

     public abstract void draw();

}

void drawAll(Drawable[] thingsToDraw) {

    for (Drawable thing : thingsToDraw) {

        thing.draw();

    }

}

public class Rectangle extends Drawable {

    public Rectangle(double w, double h) {this.w = w; this.h = h; }

    public void scale(double xsize, double ysize) {

        w *= xsize; h *= ysize;

    }

    public void draw() { // draw a W*H rectangle }

    private double xrad, yrad;

}

public class Oval extends Drawable {

    public Oval(double xrad, double yrad) {

af://n0
af://n3
af://n7


Unlike with Drawable , we can create new Rectangle s and Oval s. Since these classes are 
subtypes of Drawable , we can put them in any container whose static type is Drawable , and 
therefore we can pass them to any method that expects Drawable  parameters:

This code draws a 3*4 rectangle, and a circle with a radius of 2.

Aside: 61B specifics

The course staff have provided a style checker, which generally insists of comments for all 
methods, constructors and fields of the concrete subtypes.

However, we already have comments for draw  and scale  in the class Drawable , and the 
whole idea of object-oriented programming is that the subtypes conform to the supertype 
both in syntax and behavior (all scale  methods scale their figure), so comments are 
generally not helpful on overriding methods. Still, the reader would like to know that a given 
method does override something.

Hence, when you ride an overriding method, we give it the @Override  notation:

The compiler will check that these method headers are proper overridings of the parent’s 
methods, and the style checker won’t complain about the lack of comments.

Interfaces  

In programming, we often use the term "interface" to mean a description of this generic 
interaction, specifically, a description of the functions or variables by which two things interact. 
Java uses the term to refer to a slight variant of an abstract class that (until Java 1.7) contains only 
abstract methods (and static constants), like this:

        this.xrad = xrad; this.yrad = yrad;

    }

    public void scale(double xsize, douuble ysize) {

        xrad *= xsize; yrad *= ysize;

    }

    public void draw() { // draw an oval with axes XRAD and YRAD }

    private double xrad, yrad;

}

Drawable[] things = {

    new Rectangle(3,4), new Oval(2,2);

}

drawAll(things);

@Override

public void scale(double xsize, double ysize) {

    xrad *= xsize; yrad *= ysize;

}

@Override

public void draw() { // draw a circle with radius rad }

af://n22


Interfaces are automatically abstract: can’t say new Drawable() , but you can say new 
Rectangle(...) .

There are some difference between interfaces and abstract classes. You don't write extend , but 
instead implement .

We can use the interface as for abstract classes:

Again, this works for any other implementation of Drawable .

Multiple Inheritance  

You can only extend one class, but you can implement any number of interfaces:

The first argument of the copy  method can be a Source  or a Variable , while the second can 
be a Sink  or a Variable .

public interface Drawable {

    void scale(double xsize, double ysize); //Automatically public.

    void draw();

} 

public class Rectangle implements Drawable { ... }

void drawAll (Drawable[] thingsToDraw) {

    for (Drawable thing : thingsToDraw) {

        thing.draw();

    }

}

interface Readable {

    Object get();

}

interface Writable {

    void put(Object x);

}

class Source implements Readable {

    public Object get() { ... }

}

class Sink implements Writable {

    public void put(Object x) { ... }

}

class Variable implements Readable, Writable {

    public Object get() { ... }

    public void put(Object x) { ... }

}

void copy(Readable r, Writable w) {

    w.put(r.get());

}

af://n31
af://n35


Higher-Order Functions  

In Python, we had higher order functions like this:

Java does not have higher-order functions in this sense: you can write a method that directly 
takes in or returns another method. We can, however, use abstract classes or interfaces and 
subtyping to get the same effect.

Map  

In Java, the map function is rather strange and clumsy to use:

Java developers made it easier to do this by allowing anonymous classes, starting with Java 7:

And in Java 8, then were made even more succinct:

def map(proc, items):

    """Apply PROC to every item in ITEMS."""

    if items is None:

        return None

    else:

        return ...

        

map(lambda x: x*x, makeList(1,2,3))

public interface IntUnaryFunction {

    int apply(int x);

}

class Abs implements IntUnaryFunction {

    public int apply(int x) {

        return Math.abs(x);

    }

}

IntList map(IntUnaryFunction proc, IntList items) {

    if (items == null) {

        return null

    } else {

        return new IntList(proc.apply(items.head),map(proc,items.tail));

    }

}

R = map(new IntUnaryFunction { public int apply(int x) {return Math.abs(x);} }, 

IntList items);

/** Equivalent to: */

class Anonymous implements IntUnaryFunction {

    public int apply(int x) { return Math.abs(x); } }

R = map(new Anonymous(), some list)

af://n35
af://n39


Java now figures out you need an anonymous IntUnaryFunction  and creates one for you. Such 
examples can be seen in Signpost's GUI.

It has the Java library type java.util.function.Consumer , which has a one-argument method, 
like IntUnaryFunction ,

More on Inheritance  

One can implement multiple interfaces, but extend only one class: multiple interface 
inheritance, but single body inheritance. This scheme is simple, and pretty easy for language 
implementers to implement. However, there are cases where it would be nice to be able to “mix 
in” implementations from a number of sources.

Before Java 8, interfaces contained just static constants and abstract methods. Java 8 introduced 
static methods into interfaces and also default methods, which are essentially instance methods 
and are used whenever a method of a class implementing the interface would otherwise be 
abstract.

For example, I want to add a new, one parameter scale  method to all concrete subclasses to the 
interface Drawable  (our previous method took 2 parameters). 

One way to do this is to make Drawable  abstract again, but that comes with the same 
restrictions as before.

Thus, Java 8 introduced default methods:

It's a useful feature, but as in other languages with full multiple inheritance, it can lead to 
confusing programs.

R = map((int x) -> Math.abs(x), IntList items);

/** or, if such a function already exists */

R = map(Math::abs, IntList items);

addMenuButton("Game->New", this::newGame);

public interface Drawable {

    void scale

    (double xsize, double ysize);

    void draw();

    /** Scale by SIZE in the X and Y dimensions. */

    default void scale(double size) {

        scale(size, size);

    }

}

af://n49

	CS61B Lecture 9
	Abstract Classes
	Methods on Drawable

	Interfaces
	Multiple Inheritance

	Higher-Order Functions
	Map

	More on Inheritance


