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1 Object-oriented Programming

61A never formally teaches you the best way to do object-oriented programming
environment diagrams. It means that it's up to you to �gure out the best way
to do this, and the methods I lay out here are the ones that I personally �nd
most useful:

We continue to use the standard environment diagram model. Classes ac-
cessible from the global environment are placed in the frame like above.
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• Classes that inherit from another class have an arrow denoting which class
they inherit from.

• Instance and class variables are su�ciently separated: we draw an arrow
from instances to the right side of the class they are from.

• Each instance is given a unique identi�er like a frame in a function. Un-
fortunately since O1 (Object 1) and I1 (Instance 1) look far too much
like 01 and 11, we didn't use those pre�xes. What I've settled on using
is a crossed-out O, or the mathematical representation of an empty set,
because I �rst started writing O1, got confused, and just added slashes to
the middle. You can either draw the arrow from the name an instance is
bound to, or if your diagram is too cluttered, just write the name of the
instance as I did. The arrows are dotted to denote it is optional.

• Function calls are still opened on the left side of the diagram, below the
environment diagrams. self is always a denoted variable even when it is a
bound method, and we use the unique identi�er we came up with before
to identify these instances we are referring to.

• Doing this, we can always trace values from the global environment, to
the instance or class it is referring to, to their parent class or superclass,
etc. It takes much of the guesswork out of OOP WWPD questions.

2 Recursion

Recursion is a method of problem-solving in which a function calls on itself
within its body.

Tree recursion is a method in which a function calls on itself twice or more
within its body.

2.1 Permutation type questions

Any problem where we are dealing with a permutation, it is usually simplest
done through recursion, or tree recursion.

Here is the general structure of the permutation type question:

def function(x):

if <base case>:

...

else:

a = <permutation 1>

b = <permutation 2>

# There is usually a list comprehension somewhere to

permutate.

return a + b
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Usually, permutation 1 advances the recursive case forward by 1, and permuta-
tion 2 advances the recursive case forward by 2.

2.1.1 Question 1 (Fall 2019, Practice Midterm 2)

Write a function no_eleven that returns a list of all distinct length-n lists of
ones and sixes in which 1 and 1 do not appear consecutively.

Solution

def no_eleven(n):

if n == 0:

return [[]]

elif n == 1:

return [[6], [1]]

else:

a, b = no_eleven(n-2), no_eleven(n-1)

return [[6] + s for s in a] + [[1, 6] + s for s in b]]

You can see how well our general structure above works in this question. We
are literally combining the two permutations by using tree recursion. By only
ever adding 1 when 6 is immediately after, we can be con�dent we will never be
adding two 1s together.

2.1.2 Question 2 (Fall 2019, Lab 8)

A subsequence of a sequence S is a sequence of elements from S, in the same
order they appear in S, but possibly with elements missing. Thus, the lists [], [1,
3], [2], and [1, 2, 3] are some (but not all) of the subsequences of [1, 2, 3]. Write
a function that takes a list and returns a list of lists, for which each individual
list is a subsequence of the original input.

In order to accomplish this, you might want to use the function insert_into_all
de�ned below:

def insert_into_all(item, nested_list):

�""Assuming that nested_list is a list of lists,

return a new list consisting of all the lists in

nested_list, but with item added to the front of

each.

>�>�> nl = [[], [1, 2], [3]]

>�>�> insert_into_all(0, nl)

[[0], [0, 1, 2], [0, 3]]

"""

return [[item] + lst for lst in nested_list]
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Solution

Again, our de�ned structure makes it work! We could have not even used
insert_into_all to design this solution because it is fundamentally very similar
to the previous question.

By using this general structure, we should always be able to answer this kind
of question in tests.

2.2 Tracker variables

In certain recursive functions, we use tracker variables by calling the function
or a helper function multiple times:

Here is the general structure for this type of question without a helper func-
tion:

def function(data, k):

if k == 0:

return 0

elif data == ...:

return function(data, k-1)

else:

return function(data,k)

And here is without:

def function(data):

def helper(data, value):

if value == 0:

return ...

else:

if data == ...:

return helper(data, value-1)

else:

return helper(data, value)
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return helper(data, k) #where k is some value we want to track

Note that this is not considered tree recursion; while there are two function calls
of the helper functions within its own body, it is never the case that both calls
are executed. (Not important to memorize, but good to know regardless)

This type of structure essentially posits a base case, and an if situation for
the recursive case: if the conditional passes, then the function is advanced and
the tracker variable is updated to re�ect this, and if it fails, then the function
is advanced without updating the tracker variable.

2.2.1 Question 1 (Fall 2019, CSM Week 9, Modi�ed)

Given a list of values, write a function contains that returns True only if there
are exactly n instances of elem in the list:

Solution

def contains(elem,n,lst):

if n == 0:

return True

elif n == 1 and lst[0] == elem and elem not in lst[1:]:

return True

elif lst[0] == elem:

return contains(elem,n-1,lst[1:])

else:

return contains(elem,n,lst[1:])

2.2.2 Question 2 (Fall 2019, Lab 8)

This question makes use of both tracker variables and permutations.
In Lab 4, we examined the Subsequences problem. A subsequence of a

sequence S is a sequence of elements from S, in the same order they appear in
S, but possibly with elements missing. For example, the lists [], [1, 3], [2], and
[1, 3, 2] are subsequences of [1, 3, 2]. Again, we want to write a function that
takes a list and returns a list of lists, where each individual list is a subsequence
of the original input.

This time we have another condition: we only want the subsequences for
which consecutive elements are nondecreasing. For example, [1, 3, 2] is a sub-
sequence of [1, 3, 2, 4], but since 2 < 3, this subsequence would not be included
in our result.

Fill in the blanks to complete the implementation of the inc_subseqs func-
tion. You may assume that the input list contains no negative elements.

You may use the provided helper function insert_into_all, which takes in
an item and a list of lists and inserts the item to the front of each list.

Solution

6



This is tricky, because it is a tree recursion problem that calls itself three
times, but again, we are fundamentally doing the same thing.

We de�ne a base case, then establish a special case for which the problem
has de�ned. If the number in the sequence is smaller than the previous number
we are tracking, then we will skip to the next number in the sequence.

What about the case that the previous number was too big? Well, we are
keeping that possibility in the recursive cases below. a advances the recursive
case by moving forward in the list and marking s[0] as the previous value (using
insert_into_all to insert s[0] into the permutations of that return value), while
b advances the recursive case by moving forward two elements.

3 Trees

A tree is a widely-used abstract data type. There are two ways to make a tree:

• As an abstract data type

• As a class

Here is the ADT de�nition of a tree:

def tree(label, branches=[]):

for branch in branches:

assert is_tree(branch)

return [label]+branches

def label(tree):

return tree[0]

def branches(tree):

return tree[1:]
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def is_tree(tree):

if type(tree) != list or len(tree) < 1:

return False

for branch in branches(tree):

if not is_tree(branch):

return False

return True

def is_leaf(tree):

return not branches(tree)

def leaves(t):

if is_leaf(t):

return [label(t)]

else:

return sum([leaves(b) for b in branches(t)],[])

And here is the class de�nition of a Tree:

class Tree:

def __init__(self,label,branches=[]):

self.label = label

for branch in branches:

assert isinstance(branch,Tree)

self.branches = list(branches)

def is_leaf(self):

return not self.branches

def leaves(t):

if t.is_leaf():

return [t.label]

else:return sum([leaves(b) for b in t.branches],[])

The ADT de�nition of the function is_tree is a common example of a recursive
solution to a tree question:
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3.1 The For-Until Solution

The for-until solution does not have an explicit base case. It relies on an implicit
base case. It uses a for/while loop and an if statement containing a recursive
call within its suite, during which point it will return a False statement if any of
the conditions are hit. If the code manages to make it through the entire loop
without hitting a return False statement, it will return True at the end.

General structure:

def function(tree):

...

for/while <...>:

if <...>:

return False

return True

This structure is only generally used when you want to return a boolean value.

3.1.1 Question 1 (Guerilla 2, Fall 2019)

A min-heap is a tree with the special property that every nodes value is less
thanor equal to the values of all of its children. For example, the following tree
is a min-heap:

1

/ | \

5 3 6

| / \

7 9 4

However, the following tree is not a min-heap because the node with value 3
has avalue greater than one of its children:

1

/ | \

5 3 6

| / \

7 9 2

Write a function is_min_heap that takes a tree and returns True if the tree is
a min-heap and False otherwise.

Solution (uses ADT de�nition):

def is_min_heap(t):

for b in branches(t):

if label(t) > label(b) or not is_min_heap(b):

return False

return True
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3.2 The Basic Recursion Solution

A very general structure that is primarily used in Tree solutions is:

def function(t):

if is_leaf(t):

return ...

else: #The else clause is optional.

for ... in branches(t):

... # A recursive call to function is usually found here

return ... # or here

Occassionally, you may also meet this general structure:

def function(t):

if is_leaf(t):

return ...

else:

placeholder = [function(b) for b in branches(t)]

return label(t)... # Usually either the placeholder is

combined with or compared against

t.label.

At a fundamental level, you will see below that the solutions all share many
similarities, even if they have been written di�erently!

3.2.1 Question 1 (Midterm 2, Fall 2015)

Implement complete, which takes a Tree instance t and two positive integers,
d and k. It returns whether t is d-k-complete. A tree is d-k-complete if every
node at a depth less than d has exactly k branches and every node at depth d
is a leaf. Notes: The depth of a node is the number of steps from the root; the
root node has depth 0. The built-in all function takes a sequence and returns
whether all elements are true values: all([1, 2]) is True but all([0, 1]) is False.
Tree appears on the Midterm 2 Study Guide.

Solution (uses Class de�nition)

def complete(t, d, k):

if not t.branches: #Same as t.is_leaf()

return d == 0

bs = [complete(b, d-1,k) for b in t.branches]

return len(bs) == k and all(bs)
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3.2.2 Question 2 (Midterm 2, Spring 2016)

Referring back to the explanation of min-heap from the For-Until loop question,
write a function remove_leaf to destructively remove the far leftmost leaf of a
tree and return its label.

Solution (uses Class de�nition)

def remove_leaf(t):

child = t.branches[0]

if child.is_leaf():

v = child.label

t.branches = t.branches[1:]

return v

else:

return remove_leaf(child)

3.2.3 Question 3 (Midterm 2, Spring 2018)

A sibling of a node in a tree is another node with the same parent. Implement
sibling, which takes a Tree instance t, and returns a lsit of the labels of nodes
in t that have a sibling. For example

1

/ \

3 9

| |

4 5

/ | \

5 3 8

Result = [3,9,5,3,8]

Solution (uses class de�nition)

def siblings(t):

result = [b.label for b in t.branches if len(t.branches) > 1]

for b in t.branches:

result += siblings(b)

return result

3.3 The Zip Solution

We have never seen this in any past iteration of 61A, but I'm willing to bet that
a question with a zip function will be implemented.

The zip function takes two lists and returns an iterator of tuples where the
�rst item in each passed-in iterator is paired together.
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a = [1,2,3]

b = [4,5,6]

x = zip(a,b)

print(list(x))

[[1,4],[2,5],[3,6]]

3.3.1 Question 1 (Fall 2019, Lab 5, Modi�ed)

Implement add_trees, which takes two trees and returns a new tree where each
corresponding element in the two trees are added together. If one tree has
elements in a place where the other element does not, that element should be
returned without being modi�ed.

Solution (uses class de�nition)

The zip function takes the branches of both t1 and t2 and lets the for loop
iterate over both elements.

4 Linked Lists

A linked list is an inherently recursive data structure. In 61A, they are always
represented with the Link class:

class Link:

def __init__(self,first,rest=empty):

empty = ()

self.first = first

self.rest = Link(rest)
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4.1 The Recursive Solution

The recursive solution is the most common type of linked list solution.

def function(lst):

if lst is Link.empty:

...

else:

...

function(lst.rest)

Some solutions use lst.rest == Link.empty, which depends on whether you will
need to do anything to the �nal label before the empty list.

This basic structure solves more than half of linked list questions with some
modi�cation.

4.1.1 Question 1 (Spring 2015, Midterm 2)

Implement double_up, which mutates a linked list by inserting elements so that
each element is adjacent to an equal element. The double_up function inserts
as few elements as possible and returns the number of insertions.

Solution

def double_up(s):

if s == Link.empty:

return 0

elif s.rest == Link.empty:

s.rest = Link(s.first,s.rest)

return 1

elif s.first == s.rest:

return double_up(s.rest.rest)

else

s.rest = Link(s.first,Link.empty)

return 1 + double_up(s.rest.rest)

You can see that although this involves an if and two elif clauses, the basic
structure of the solution remains the same. There is one suite of conditions that
handles what happens when an empty list is returned (which means we've hit
the end), and another suite that handles what to do before we get to the end.
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4.2 The Iterative Solution

It is possible to perform the iterative solution on linked lists, which follows this
general structure:

def function(lst):

...

while lst.rest: #lst and lst != Link.empty are also

both possible

...

lst = lst.rest

return ...

The key di�erence with the recursive de�nition is that the iterative solution
moves through the list front to back, while the recursive de�nition moves from
back to front.

4.2.1 Question 1 and 2 (Spring 2016, Midterm 2)

Similarly to double-up above, implement the functions double1 and double2,
which produce linked lists in which each item of the original list is repeated
immediately after that item:

• double1 should be non-destructive, producing a new list without disturb-
ing the old list.

• double2 should be destructive, modifying the original linked list wherever
possible.

Solution

def double1(s):

result = Link.empty

last = None

while s is not Link.empty:

if last is None:

result = Link(L.first,Linked(L.first))

last = result.rest

else:

last.rest = Link(L.first, Link(L.first))

last = last.rest.rest

s = s.rest

return result
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def double2(s):

result = s

while s is not Link.empty:

s.rest = Link(s.first,s.rest))

s = s.rest.rest

return result

4.2.2 Question 3 (Spring 2019, Midterm 2)

Implement link_to_dict which takes a linked list encoding a ��attened� dictio-
nary (in which the elements are key 1 > value 1 > key 2 > value 2 etc.), removes
all the values, and returns the equivalent dictionary. The input and returned
list may include duplicate keys. You may assume the linked list always has an
even number of elements:

def link_to_dict(s):

d = {}

while L is not Link.empty:

key, value = L.first, L.rest.first

if key not in D:

D[key] = [value]

else:

D[key].append(value)

L.rest, L = L.rest.rest, L.rest.rest

5 Miscellaneous knowledge

5.1 Decorators

Here is how the memo-ization function works:

def memo(f):

cache = {}

def memoized(n):

if n not in cache:

cache[n] = f(n)

return cache[n]

return memoized

You can memoize any function with @memo, or by passing it into the higher-
order function memo:
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>�>�> fib = memo(fib)

>�>�> fib(2)

1

Every decorator you need to build in this class will follow this same general
structure:

def decorator(function):

def decorated(value):

...

return function(value)

return decorated

6 Macros

Macros are a special form in Scheme that mix up the order of operations. Here
is how Scheme typically executes procedures:

1. Evaluate the operator.

2. Evaluate all of the operands, left to right.

3. Apply the operator to the operands by evaluating the body of the proce-
dure.

Macro procedures are executed as such:

1. Evaluate the operator.

2. Apply the operator to the unevaluated operands, creating a new Scheme
program that is �returned� by the procedure.

3. Execute said program within the frame it was called in.

6.0.1 Question 1 (Spring 2018, Final)

Implement lambda-macro, a macro that creates anonymous macros. Alambda-
macroexpression hasa list of formal parameters and one body expression. It
creates a macro with those formal parameters andthat body. Assume that the
symbol anon is not use anywhere else in a program that contains lambda-macro.

(define-macro (lambda-macro bindings body)

`(begin (___ ___ ___) anon))

Solution

(define-macro (lambda-macro bindings body)
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`(begin (define-macro ,(cons 'anon bindings) ,body) anon))

Why does this work? Let's see what the unevaluated Scheme procedure is for a
program ((lambda-macro (x) (car x)) (+ 1 2)):

(begin (define-macro (anon x) (car x)) anon)

You will see that �rst we de�ne this new macro function and give it the name
anon. Then, the anon name is returned into the global frame, which means we
can directly use it (in the sample program above, it means we are calling:

(anon (+ 1 2))

Why do we use cons? Well, remember that bindings in lambda functions are
passed in as a list of their own, while in a def, they are passed in as a list
together with the name of the procedure:

(define (x a b) ...)

(lambda (a b) ...)

The cons allows us to easily �merge� the name anon with this list of parameters.

6.0.2 Question 2 (Summer 2018, Mock Final)

Write a macro called zero-cond that takes in a list of clauses, where each clause
is a two-element list containingtwo expressions, a predicate and a corresponding
result expression. All predicates evaluate to a number. The macro should
evaluate each predicate and return the value of the expression corresponding to
the �rst true predicate, treating 0 as a false value.

scm> (zero-cond((0 'result1)

... ((- 1 1)'result2)

... ((* 1 1)'result3)

... (2 'result4)))

result3

(define-macro (zero-cond clauses)

(cons 'cond (map _________________________________

__________________________________________________

)))

Solution

(define-macro (zero-cond clauses)

(cons 'cond

(map

(lambda (clause) (cons
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(not (= 0 (eval (car clause) ) ) )

(cdr clause) )

)

clauses)))

Why does this work? First, let's see what the unevaluated Scheme program is
(before step 3 is executed) for the sample code above.

(cond

(#f 'result1)

(#f 'result2)

(#t 'result3)

(#f 'result4)

)

This question is very unique because it involves both a map and an inner lambda
function in its solution. The lambda function requires an inner eval because it
is taking in the clause variable as an unevaluated operator from the macro, and
quoting and unquoting... doesn't really go that far.

As for the other parts, remember that map takes in a function (our lambda)
and an iterable (clauses), and returns a new list, the cond list we build. Our
lambda takes each of the clauses, evaluates its car (the predicate), and then
returns a list that represents a single clause in cond, where the consequent
is not evaluated at this stage. We use cons in the lambda because we want
(cdr clause) to be part of the same list as the predicate, and using cons in the
beginning because our map already returns a beautiful list, and we just need to
merge it with the single cond special form at the beginning.

6.0.3 Question 3 (Spring 2019, Final)

The if special form has been removed from Scheme. Implement an if macro
using only and/or.

(define-macro (if _______) ________)

Solution

(define-macro (if pred conq alt) `(or (and ,pred ,conq)

(and (not ,pred) ,alt)))

This is probably the most straightforward macro question of all, because it
frankly isn't testing your macro knowledge so much as testing your logic. Nev-
ertheless, it is a good study in why we should use macros, as it is a program
that would not otherwise be possible without it.
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